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Abstract

In order to optimally design materials, it is crucial to understand the structure–property relations in the material by analyzing
he effect of microstructure parameters on the macroscopic properties. In computational homogenization, the microstructure
s thus explicitly modeled inside the macrostructure, leading to a coupled two-scale formulation. Unfortunately, the high
omputational costs of such multiscale simulations often render the solution of design, optimization, or inverse problems
nfeasible. To address this issue, we propose in this work a non-intrusive reduced basis method to construct inexpensive
urrogates for parametrized microscale problems; the method is specifically well-suited for multiscale simulations since the
oupled simulation is decoupled into two independent problems: (1) solving the microscopic problem for different (loading or
aterial) parameters and learning a surrogate model from the data; and (2) solving the macroscopic problem with the learned
aterial model. The proposed method has three key features. First, the microscopic stress field can be fully recovered, which is

seful for instance for revealing local stress concentrations inside the microstructure. Second, the method is able to accurately
redict the stress field for a wide range of material parameters; furthermore, the derivatives of the effective stress with respect
o the material parameters are available and can be readily utilized in solving optimization problems. Finally, it is more data
fficient, i.e. requiring less training data, as compared to directly performing a regression on the effective stress. To construct
he surrogate model, first, a proper orthogonal decomposition is performed on precomputed microscopic stress field snapshots to
nd a reduced basis for the stress. Second, a regression is employed to infer the coefficients of the reduced basis approximation
or any arbitrary parameter value, thus enabling a rapid online evaluation of the microscopic stress. Equipped with the stress
eld, the effective stress and its partial derivatives can then be derived analytically. For the microstructures in the two test
roblems considered, the mean approximation error of the effective stress is as low as 0.1% despite using a relatively small
raining dataset. Embedded into the macroscopic problem, the reduced order model leads to an online computational speed up
f approximately three orders of magnitude while maintaining a high accuracy as compared to the FE2 solver.
c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Simulation methods are widely utilized to bridge the understanding between macroscopic behavior and the
microstructure of the material. This can be achieved by using multiscale methods such as computational homoge-
nization (CH). In CH, the microstructure and macrostructure are both separately modeled, with the microstructure
essentially replacing the constitutive model of the macroscopic problem. The microstructure is fully defined on
a representative volume element (RVE), which can be highly heterogeneous and exert highly nonlinear behavior,
while the macrostructure is then assumed to be homogeneous.

A comprehensive overview on CH is given in Geers et al. [1,2] and Matouš et al. [3]. The two-scale problem
can be solved with either a nested finite element (FE) scheme, first proposed in Feyel [4], or by a combination of
the FE method and fast Fourier transform (FFT) [5]. More recently, other mesh-free methods based on deep neural
networks such as physics-informed neural networks [6,7] and the deep collocation method [8,9] have also been used
for the solution of partial differential equations (PDEs).

Unfortunately, solving the two-scale system in CH is computationally expensive and can quickly exceed available
resources, limiting the usage to mostly two-dimensional applications [10–13]. Moreover, the difficulty in obtaining
the consistent effective stiffness from the microscale simulation presents an additional hurdle, as it is typically
required for the macroscopic Newton solver [14]. Popular approaches to find the appropriate stiffness include the
Lagrange multiplier method [15,16], condensation method [10], or the perturbation method [17,18]. However, all
these methods introduce additional problems such as increased storage requirements or higher computational costs.

To overcome this computational burden, several different reduced order models have been proposed to speed up
or to replace the microscopic simulation. These can be largely classified according to how they treat parameters,
and according to whether or not they are intrusive. The ability to handle parametrized problems makes a method
suitable for inverse tasks such as parameter identification, material design or optimization. Intrusive methods require
the modification of the underlying PDE solver, often making them impractical to use. In contrast, non-intrusive
(data-driven) methods can be wrapped around an already existent PDE solver, allowing for a simpler adoption.
In the context of CH, data-driven methods typically generate datasets from microscopic simulations and learn an
effective constitutive model from the data, essentially decoupling the two-scale problem.

One popular data-driven framework was introduced in Kirchdoerfer et al. [19] and extended in [20–22]. These
works propose a distance minimizing scheme, with which pairs of strain and stress data can be directly utilized
inside a simulation without the need of deriving an empirical constitutive model. This dataset can come either from
experiments or (microscopic) simulations. However, due to the nature of this method, it is only able to describe and
reconstruct a given material dataset and cannot predict new materials.

Recognizing that stress–strain data is generally difficult to obtain from experiments, a slightly different approach
was introduced in Huang et al. [23,24], where the constitutive model is approximated by a neural network, which is
then inversely trained from load–displacement data. Unfortunately, the trained parameters inside the neural network
(weights and biases) do not represent actual physical parameters, and therefore the method can only describe the
given dataset.

Several other works attempted to learn a constitutive model directly from pairs of stress and strain data with
different neural network architectures [25–32]. After the pioneering works in Ghaboussi et al. [25], several works
have applied deep neural networks (DNN) to different areas of constitutive modeling. In [27–29] different recurrent
neural network architectures were proposed to learn an inelastic material model from stress and strain loading data
that were obtained from RVE simulations. However, the models were trained only with deformation data and did not
consider parameters, inhibiting their use for finding new materials and designs. Recent works have also attempted
to overcome this challenge. In Le et al. [33], it was proposed to use neural networks to learn the effective potential
of a hyperelastic material from which the effective stress and stiffness can be derived, while also including multiple
microstructural parameters. In Mozaffar et al. [30] a recurrent neural network that can treat both temporal (strain
path) and non-temporal (volume fraction) parameters simultaneously was proposed, and the stress prediction for
a class of composite materials was illustrated. More recently, works [24,31,32] have also attempted to construct a
neural network that learns constitutive models that fulfill the thermodynamical laws as defined in [34].

Although these neural network-based methods are capable of finding accurate surrogate models, they typically
require huge amounts of data, which are often generated from simulations. For complex microstructures, running
these simulations repeatedly might be computationally too expensive. Furthermore, these surrogate models generally
only consider the effective quantities, which are obtained by averaging the microscopic quantities, and neglect all the
2
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field information of the microscopic simulation. This means that the connection between macro- and microstructure
is completely lost and local microscopic quantities can no longer be recovered.

Intrusive methods, on the other hand, still consider the microscopic PDE and therefore often require far less data
due to the known physics. Instead of replacing the microscopic problem, the solution is accelerated. One notable
method is the Transformation Field Analysis (TFA) [35], which is specifically designed for simulations involving
inelastic materials. By considering the field of internal variables to be piecewise uniform, the computational cost
of evaluating the nonlinear terms is greatly decreased. Moreover, the number of internal variables that needs to be
tracked is also reduced. Later, the method was generalized to non-uniform fields and referred to as Nonuniform
Transformation Field Analysis (NTFA) [36,37]. Even though successful in accelerating two-scale simulations,
the reduced model is designed for a specific microscopic material model and therefore cannot handle material
parameters [38].

Another approach called the Self-consistent Clustering Analysis (SCA) was proposed in Liu et al. [39] and
extended in [40]. The idea of this method is to find material points within a microstructure that exhibit similar
deformation behavior and to group them into clusters. It is then assumed that each cluster exhibits the same
deformation, therefore reducing the number of independent points to the number of clusters. The compressed
problem is then solved with a FFT approach. A similar approach was proposed in [41], however, in that work
the problem is solved with a three-field Hashin–Shtrikman type variational formulation. Similarly to (N)TFA, this
method does not offer a direct way of treating material parameters.

In the Proper Generalized Decomposition (PGD) [42,43], the solution to a PDE is approximated by a linear
combination of terms that each consist of a separated functional representation for each independent variable
(i.e. coordinates, time, and parameters). The PGD approach has been applied to nonlinear solid mechanics problems,
see, e.g., [44]. It has also been combined with the LATIN multiscale method for non-linear problems, see, e.g., [43].
However, the method becomes increasingly more difficult for severe nonlinearities, especially in combination with
varying parameters [42].

A related approach is the reduced basis (RB) method [45–47] which attempts to reduce the parametric problem
by searching for the PDE solution on a reduced space spanned by global parameter-independent basis functions.
The basis functions can be constructed by a proper orthogonal decomposition (POD) of a collection of high-
fidelity simulations, which are often referred to as snapshots. The solution can then be found by either solving
the reduced problem with a (Petrov–)Galerkin projection [48–53] or as proposed in more recent works by using a
regression-based approach to find the basis coefficients [54–59]. Material parameters can naturally be dealt with in
this framework.

The projection-based approach works especially well when the problem has an affine dependence on the
parameters, allowing the decoupling into an offline (construction of the RB) and online stage (solving the reduced set
of equations). However, this is not the case for the general solution of a nonlinear problem since the nonlinear terms
will still depend on the full scale problem. To work around this issue, methods such as the empirical interpolation
method (EIM) [60] and its discrete variant [61], or hyperreduction [52] can be used to approximate the nonlinear
term and recover the affine dependence. In the context of CH, POD was first applied on a hyperelastic material in
Yvonnet et al. [62]. However, in this work the Galerkin approach was directly applied without any special treatment
of the nonlinear term, thus resulting in a rather modest speedup. In Hernández et al. [53], the computation of the
nonlinear term was accelerated by a hyperreduction scheme and an algorithm to find appropriate integration points
was proposed. In Soldner et al. [50], POD was combined with three different hyperreduction schemes and it was
found that some approximations led to convergence problems in some cases. Another problem is that there does not
exist a practical way of calculating the consistent effective stiffness [62], as this would require the full assembly of
the microscopic tangent matrix. If the tangent matrix was approximated with a hyperreduction scheme, its symmetry
might not be preserved and therefore an inconsistent effective stiffness obtained with a perturbation method might
be preferable [50].

Instead of solving the reduced system, the regression-based approach infers the coefficients of the corresponding
RB functions from a regression. In doing so, the online phase only consists of evaluating the coefficients from
which the solution field can be directly obtained. Furthermore, the method becomes non-intrusive, similar to the
other data-driven approaches. However, as observed in Hesthaven et al. [55], considerably more snapshots might
be needed to construct an accurate regression as compared to an accurate basis. For that reason, active learning
algorithms [54,59] or a bifidelity reconstruction [56] were recently proposed in order to minimize the number of
snapshots needed.
3
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While the projection-based method efficiently approximates only the field variable (here, the displacements), the
regression-based approach could, in principle, be applied to any derived variable obtained in the high-fidelity solution
(here, e.g., the stress). In [57], Swischuk et al. utilized a regression-based POD to directly find the strain field. In
the case of CH, the microscopic displacements are not needed, but only the effective stress is required. Hence, in
this work, we propose a regression-based RB surrogate model for the microscopic stress field, which is specifically
geared towards multiscale simulations, to combine the advantages of intrusive and non-intrusive methods: (i) Due
to the non-intrusiveness, this method can be easily implemented and the two-scale problem is decoupled into two
independent problems, (ii) the approximation of the stress field allows a direct way of computing the effective stress
and its derivative with respect to any (loading or material) parameter and (iii) even though the method requires
more data as compared to the projection-based POD, it is more data efficient as compared to the pure data-driven
methods. Furthermore, there are two reasons that favor the stress-based regression over the usual displacement-based
approach:

1. If the displacements were approximated, the stresses would still need to be computed from the displacements.
This means that the material model must be implemented again, or the displacement data has to be fed into
the microstructural solver to return the stresses, thus negating the advantages of the non-intrusive method.
Furthermore this would lead to unnecessary additional computation, leading to decreased efficiency.

2. Inelastic material models are defined in stress rate rather than stresses, including internal variables in their
formulation that need to be tracked. It would thus not be possible to determine the stresses using only the
displacement field since the evolution of the internal variables would not be known. As a result, the procedure
would become highly inefficient or even inapplicable to history-dependent material behavior. On the other
hand, works in DNN have shown that history-dependent behavior can be learned from stress and strain data
alone without the need for internal variables [25–30,63].

The remainder of this paper is organized as follows. In Section 2, the two-scale theory of first-order computational
homogenization is reviewed. Following that, Section 3 presents how the non-intrusive reduced order model is
constructed. Moreover, an error estimation and a comparison to neural networks is provided. Two microstructural
simulations and a two-scale problem are addressed in Section 4, testing the capabilities of the proposed framework.
A summary of the findings and concluding remarks are presented in Section 5.

Notation. In this work, italic bold symbols are employed for coordinates and functions, such as the coordinates X ,
the displacement field u or the stress field P . Upright bold symbols are used for vectors or tensors representing
algebraic or discretized quantities, such as the identity matrix I, discrete stress field snapshots P or the snapshot
tensor S. When A is a N th-order tensor with indices x1, x2, . . . , xN , then Ax1,x2,...,xn with n ≤ N denotes the same
tensor with the first n indices held fixed and is of (N − n)th-order. As an example, when A is a matrix, then Ai
denotes the i th row vector and Ai j the entry at the i th row and j th column. Macroscopic variables are denoted by
an overline to distinguish them from microscopic quantities; otherwise, the notation described above is used for
both micro- and macroscopic quantities.

2. Homogenization theory

2.1. Macroscopic simulation

Consider a solid body Ω̄ that is deformed under prescribed boundary conditions. Under the deformation, each
oint X̄ of the undeformed body is continuously mapped onto the coordinates x̄ of the deformed body. The
acroscopic displacement for each point is defined as ū := x̄ − X̄ , and the macroscopic deformation gradient

hen follows as

F̄ :=
∂ x̄
∂ X̄

= I +
∂ ū
∂ X̄

. (1)

he governing partial differential equation (PDE) describing the deformation is given by the quasi-static linear
omentum balance,

Div P̄ + B̄ = 0 on Ω̄ ,

P̄ N̄ = t̄0 on ∂Ω̄ N , and
¯ D

(2)
ū = ū0 on ∂Ω ,

4
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where P̄ is the macroscopic first Piola–Kirchhoff (PK1) stress tensor, B̄ are the body forces, N̄ is the outward
normal on the surface of the body, t̄0 and ū0 are the prescribed traction and displacement, and ∂Ω̄ N , ∂Ω̄ D denote
the Neumann and Dirichlet boundaries with ∂Ω̄ = ∂Ω̄ N

∪ ∂Ω̄ D and ∂Ω̄ N
∩ ∂Ω̄ D

= ∅. The weak form of Eq. (2)
is then

Ḡ :=

∫
Ω̄

∂δū
∂ X̄

: P̄dV −

∫
Ω̄

B̄ · δūdV −

∫
∂Ω̄N

t̄0 · δūd A = 0, ∀δū ∈ H 1
0 (Ω̄ ), (3)

here δū ∈ H 1
0 (Ω̄ ) = {v ∈ H 1(Ω̄ ) | v = 0 on ∂Ω̄ D

} is a test function, and a solution for the displacement,
ū ∈ H 1(Ω̄ ), is sought that fulfills ū = ū0 on ∂Ω̄ D . To solve for the displacements, ū, the linearization of Ḡ in the
irection ∆ū around the current deformation ū is needed,

DḠ · ∆ū =

∫
Ω̄

∂ (δū)
∂ X̄

:
∂ P̄
∂ F̄

: (D F̄ · ∆ū)dV

=

∫
Ω̄

∂ (δū)
∂ X̄

: Ā :
∂∆ū
∂ X̄

dV,

(4)

where Ā :=
∂ P̄
∂ F̄

is the macroscopic stiffness tensor. To model a certain material behavior, a constitutive relation

hich connects P̄ and Ā to the deformation F̄ has to be provided.

.2. Microscopic simulation

The microscopic simulation is defined on a representative volume element (RVE) Ω . In first-order CH, it is
assumed that the microscopic deformed points x are coupled to the macroscopic deformation by

x := F̄X + w(X), (5)

here w(X) is a zero-mean microscopic fluctuation displacement field. Note that the macroscopic deformation
radient F̄ depends on the macroscopic coordinates X̄ . For conciseness, this dependence is omitted here and the
ollowing equations are given for a fixed X̄ . The microscopic displacement is then given as

u := (F̄ − I)X + w(X), (6)

and the microscopic deformation gradient as

F :=
∂ x
∂ X

= F̄ +
∂w

∂ X
. (7)

Analogous to the above, the microscopic deformation is governed by the quasi-static linear momentum balance,

DivP = 0 on Ω ,

P N = t0 on ∂Ω N , and

u = u0 on ∂Ω D,

(8)

where body forces are neglected for simplicity. The weak form is given as

G =

∫
Ω

∂δu
∂ X

: PdV −

∫
∂ΩN

t0 · δud A = 0, ∀δu ∈ H 1
0 (Ω ), (9)

nd the linearization of G in the direction ∆u around the current state u is

DG · ∆u =

∫
Ω

∂ (δu)
∂ X

:
∂ P
∂ F

: (D F · ∆u)dV

=

∫
Ω

∂ (δu)
∂ X

: A :
∂∆u
∂ X

dV .

(10)

In contrast to the macroscale, the materials are fully specified by a constitutive law in the microscale. In this
work, we consider a hyperelastic Neo-Hookean material model with strain energy density function

W (F, µ) = C (Tr(C) − 3 − 2 ln J ) + D (J − 1)2, (11)
1 1

5
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Fig. 1. Scale coupling. (a) The macroscale simulation transfers a macroscopic deformation gradient to the microscale. (b) The microscopic
response is subsequently computed and (c) the effective stress and stiffness are transferred back to the macroscale. The macroscopic solver
does not require the microscopic deformation, hence it is beneficial to directly construct a surrogate model for the microscopic stress.

where C1 and D1 are the material parameters stored in µ = [C1, D1]T , Tr(•) denotes the trace of a tensor, C = FT F
he right Cauchy–Green deformation tensor and J = det(F) is the determinant of F respectively. The material
arameters C1 and D1 are related to the Young’s modulus E and Poisson ratio ν by

E =
2C1(3D1 + 2C1)

C1 + D1
, ν =

D1

2(C1 + D1)
. (12)

he PK1 stress and stiffness tensor can then be derived from Eq. (11),

P =
∂ W
∂ F

, A =
∂ P
∂ F

=
∂2W
∂ F2 . (13)

2.3. Scale coupling

The aim of the microscopic simulation is to replace the macroscopic constitutive model P̄(X̄, F̄). For every
quadrature point in the macrostructure, the macroscopic simulation transfers the macroscopic deformation gradient to
the microscopic simulation, which in turn returns an effective stress and stiffness tensor; see Fig. 1 for a visualization.
The displacements of both scales are coupled according to Eq. (6). Furthermore, the Hill–Mandel Condition,

⟨P : δF⟩ = P̄ : δ F̄, (14)

states that the virtual work exerted on both scales has to be the same; here, ⟨{•}⟩ = |Ω |
−1 ∫

Ω {•}dV denotes the
volumetric averaging operator with |Ω | the volume of the RVE Ω .

It can be shown that the condition is always fulfilled by introducing appropriate boundary conditions for
he microscopic problem. One set of boundary conditions that fulfill Eq. (14) are linear displacement boundary
onditions, where the fluctuation displacement w on the RVE boundary is assumed to be zero. With Eq. (5), the
ollowing Dirichlet boundary condition follows:

u = x − X = (F̄ − I)X on ∂Ω . (15)

In [14], it is shown that, by prescribing Eq. (15) on the boundaries, the macroscopic deformation gradient is
¯ ⟨ ⟩
always equal to the averaged microscopic deformation gradient, i.e. F = F . It then follows that the averaged

6
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microscopic stress has to be equal to the macroscopic stress:

⟨P⟩ =

⟨
∂ W
∂ F

⟩
=

∂ W̄
∂ F̄

:
∂ F̄
∂ F

=
∂ W̄
∂ F̄

= P̄ . (16)

owever, the averaged stiffness tensor is generally not equal to the macroscopic stiffness tensor due to the changes
f w inside Ω , i.e.,

⟨A⟩ ̸= Ā, (17)

thus complicating the calculation of the correct effective stiffness [14]. A popular way to compute the stiffness with
a perturbation method is suggested in [17], which essentially approximates the stiffness with a finite difference
scheme.

3. Reduced order model

The two-scale simulation presented above can be solved using the finite element method (FEM) on both scales,
leading to a nested FE scheme, also known as FE2. Although effective, FE2 method tends to be computationally very
expensive. To lower the computational cost, we approximate the microscopic problem using a non-intrusive reduced
order model, constructed by a proper orthogonal decomposition (POD) and a Gaussian process regression (GPR),
which we will refer to as P-PODGPR later. The proposed method differs from existing works in the literature (see
e.g. [54,56,57,64]) in that the non-intrusive reduced order model is constructed directly for the stresses instead of
the displacements or strains. As seen in Fig. 1, both displacement and strain are not required by the macroscopic
solver and, moreover, the stresses still need to be calculated, which means that the microscopic constitutive law has
to be implemented anew, negating the advantages of a non-intrusive method. Moreover, depending on the material
model the evaluation might be costly and compromise the speed up significantly. It is also not obvious how one
would derive the effective stiffness for that case. On the other hand, reducing the stresses directly circumvents the
above-mentioned disadvantages, and both the effective stress and stiffness can be rapidly obtained.

3.1. Proper orthogonal decomposition (POD)

Principal component analysis (PCA) is a powerful tool in data science to find a low-dimensional approximation
in Euclidean space. By introducing an appropriate function metric, PCA can be generalized for functions in Hilbert
spaces and is referred to as proper orthogonal decomposition (POD). POD can utilize the correlation of solutions
of a problem for different parameters to find a low-dimensional orthonormal basis, thus reducing the number of
unknowns to a very small fraction of the dimension of the original high-fidelity model. The procedure for computing
the low-dimensional basis of the microscopic stress P ∈ L2(Ω ) is outlined in the following.

3.1.1. Basis construction
After Npod high-fidelity simulations for different parameters have been carried out, the microscopic stress in all

quadrature points P ∈ RNqp×3×3, where Nqp is the total number of quadrature points in the high-fidelity model, is
collected for each solution in the snapshot tensor S ∈ RNqp×3×3×Npod ,

S =
[
P(1), P(2), . . . , P(Npod)] . (18)

Next, the correlation matrix C ∈ RNpod×Npod can be formed by computing the L2-inner product between every
pair of two snapshots,

Ci j =
(

P (i), P ( j))
L2(Ω)

=

∫
Ω

P (i)
: P ( j)dV

=

Nqp∑
q=1

wqP(i)
q : P( j)

q ,

(19)

where (•, •)L2(Ω) denotes the L2-inner product and i, j = 1, 2, . . . , Npod. The weights wq are the integration weights

corresponding to each quadrature point; they only depend on the mesh and can be easily computed. Note the

7



T. Guo, O. Rokoš and K. Veroy Computer Methods in Applied Mechanics and Engineering 384 (2021) 113924

w
e
b

B

3

w
p
o
a
d

subtle difference between italic and nonitalic characters used, corresponding to L2(Ω ) functions and their discrete
counterparts respectively.

After obtaining the correlation matrix, its eigenvalues λl and eigenvectors vl , l = 1, 2, . . . , min (L , Npod) are
computed, where L is the maximum number of basis functions specified by the user. The number of basis functions
is often chosen from the criterion∑L

l=1 λl∑Npod
l=1 λl

> Epod, (20)

here Epod corresponds to the energy captured by L basis functions and is specified by the user. Moreover, the
igenvalues can reveal if a problem is reducible using POD: if the eigenvalues decay rapidly, the solution space can
e accurately captured by a few basis functions. Finally, the lth POD basis function Bl ∈ RNqp×3×3 is found with

Bl =
1

√
λl

Svl . (21)

y construction, the POD basis is orthonormal, i.e.

(Bi , B j )L2(Ω) =

{
1 i = j
0 i ̸= j.

(22)

.1.2. Approximation of stress and stiffness
With the POD basis functions, P can be approximated with

PRB(F̄, µ) =

L∑
l=1

αl(F̄, µ)Bl , (23)

here the loading F̄ and material parameters µ are listed separately, as the partial derivative over the loading
arameters yields the stiffness tensor, whereas the partial derivative with respect to µ could be used for optimization
r inverse problems. Since the basis functions Bl are constant, only the coefficients αl ∈ R depend on the parameters
nd need to be found for a new parameter value. Note that with this approach the ability to determine the microscopic
isplacement, energy and stiffness tensor is lost, if the constitutive relation P(F) cannot be inverted. However, if

knowledge of the deformation is required, a similar procedure using displacement or deformation gradient snapshots
could be implemented [54,56]. This should in general work well if the stresses can be approximated accurately,
because the stress is a non-linear function of the displacement and therefore should be more difficult to approximate.

By averaging the microscopic stress, the macroscopic stress P̄ ∈ R3×3 is found:

P̄ =
⟨
PRB⟩

= |Ω |
−1
∫
Ω

PRBdV

= |Ω |
−1

Nqp∑
q=1

wqPRB
q

= |Ω |
−1

Nqp∑
q=1

wq

(
L∑

l=1

αl(F̄, µ)Blq

)
.

(24)

Lastly, the effective stiffness Ā ∈ R3×3×3×3 is determined by differentiating the macroscopic stress over the
macroscopic deformation gradient,

Ā =
∂ P̄
∂ F̄

= |Ω |
−1

∂
(∑Nqp

q=1 wq

(∑L
l=1 αl(F̄, µ)Blq

))
∂ F̄

= |Ω |
−1

Nqp∑
wq

(
L∑

Blq ⊗
∂αl(F̄, µ)

∂ F̄

)
.

(25)
q=1 l=1
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As seen above, by introducing the approximation Eq. (23), the macroscopic stiffness tensor can be naturally
derived when the derivative of the coefficients αl with respect to F̄ is available. Moreover, the derivatives of stress
with respect to the material parameters µ can be obtained analogously and used in optimization or inverse problems.

Remark. As this surrogate model is used to replace the microstructural simulation, it is sufficient to construct
the basis for macroscopic stretches Ū instead of F̄, since the macroscopic deformation gradient can be split into
F̄ = R̄Ū by using the polar decomposition, where R̄ accounts for rotations, see [65]. Due to the symmetry of Ū ,
he number of parameters reduces from 4 to 3 in 2D or from 9 to 6 in 3D. In the following, F̄ is therefore replaced
y Ū and all snapshots are assumed to have been obtained for different Ū and µ.

.2. Regression model

The mapping αl(Ū, µ) for all parameters can be constructed by means of a regression, using the training data
hat have been collected for POD. If the regression quality is insufficient, more data has to be generated.

.2.1. Data preparation
The stress data P(i) collected was generated for parameters (Ū (i)

, µ(i)) with i = 1, 2, . . . , Nreg, where Nreg denotes
he total number of snapshots available. The best approximation of the i th snapshot on the POD basis is given by

P(i)
≈

L∑
l=1

(P (i), Bl)L2(Ω)Bl , (26)

nd hence α
(i)
l = (P (i), Bl)L2(Ω). All coefficients for all snapshots α

(i)
l are collected together with the parameter

ata; a mapping between the parameters and the POD coefficients is then constructed by regression, i.e.

α̂l : P → R, (Ū, µ) ↦→ α̂l(Ū, µ), (27)

here P denotes the parameter space. Due to the orthonormality of the POD basis functions, see Eq. (22),
he coefficients αl are fully uncorrelated and a separate regression for each POD coefficient can be constructed
ndependently. With this mapping, the stress P is approximated as

P̂RB(Ū, µ) =

L∑
l=1

α̂l(Ū, µ)Bl . (28)

.2.2. Gaussian process regression
Since the material model considered here is hyperelastic and therefore history independent, each stress corre-

ponds to exactly one set of deformations and therefore, a wide range of regression techniques can be used. Many
ifferent regression approaches have been used to approximate the coefficients, e.g. radial basis functions [58],
eural networks (NNs) [55], and Gaussian process regression (GPR) [54,56,59]. A systematic investigation on these
hree methods has been conducted in [66]. A comparison of different machine learning methods for regression was
erformed in [57]. For this work, GPR is used since it offers some desirable properties:

1. It can reconstruct the training data perfectly, i.e. it reproduces the exact solution at the training points.
2. Depending on the chosen kernel, the regression function has a specified smoothness and its derivatives can

be obtained analytically.
3. The trained GPR model returns an uncertainty measure for each evaluation, which can be used to estimate

the regression error or to develop an active learning scheme [54,67].

In GPR, a scalar regression function f (X) with X ∈ Rd is assumed to be distributed as a Gaussian process (GP)
with a zero mean function and kernel kθ (X, X′),

f ∼ GP(0, kθ (X, X′)). (29)

he form of the kernel kθ (X, X′) has to be chosen by the user, and each kernel has hyperparameters θ that must be

tted to the data. In this work, we use, as in [54], the automatic relevance determination (ARD) squared exponential

9
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kθ (X, X′) = σ 2
f exp

(
−

1
2

d∑
k=1

(Xk − X ′

k)2

l2
k

)
, (30)

here θ = [σ f , l1, l2, . . . , ld ].
Given a finite number of data points {X(i), f (X(i))}

Nreg
i=1 , the optimal hyperparameters θ can be determined with

maximum likelihood estimation [54,68], hence yielding a prior GP f . By Bayesian inference, the posterior GP
f ∗(x) can then be given as

f ∗
|(X, y) ∼ GP(m∗, k∗), (31)

m∗(x) = kθ (X, x)T kθ (X, X)−1y(X), (32)

k∗(x, x′) = kθ (x, x′) − kθ (X, x)T kθ (X, X)−1kθ (X, x′), (33)

here kθ (X, x) = [kθ (X(1), x), kθ (X(2), x), . . . , kθ (X(Nreg), x)]T , kθ (X, X) = [kθ (X(i), X( j))]
Nreg
i, j=1, and y(X) =

f (X(1)), f (X(2)), . . . , f (X(Nreg))]T . For any arbitrary input x, a distribution N (m∗(x), k∗(x, x)) can thus be obtained.
A GPR is separately performed for each POD basis coefficient, yielding in total L GPR models. The ARD

ernel is infinitely smooth, hence the Jacobian of αl can be easily obtained and Eq. (25) is fully specified. With the
rained GPR models and the POD basis, the surrogate model for the microscopic simulation is complete. Given a
arameter, the microscopic stress field can be rapidly evaluated, from which the effective stress and its derivative
an be derived. Therefore the surrogate model can be considered a learned constitutive model, where additionally
he stress field on the microscale is still accessible.

As indicated earlier, the non-intrusive reduced order model will be referred to as P-PODGPR.

.2.3. Error estimate
For brevity of notation, we use the symbol π to denote both the loading and material parameters in this section.

sing the Cauchy–Schwarz inequality, it can be shown that the total error between the high fidelity simulation and
he approximation by P-PODGPR for a parameter π ∈ P consists of the projection error and regression error,

ϵP-PODGPR(π ) = ∥PHF(π ) − P̂
RB

(π )∥L2(Ω)

= ∥PHF(π ) − PRB(π ) + PRB(π ) − P̂
RB

(π )∥L2(Ω)

≤ ∥PHF(π ) − PRB(π )∥L2(Ω)  
projection error

+ ∥PRB(π ) − P̂
RB

(π )∥L2(Ω)  
regression error

.

(34)

f the parameter space has been appropriately explored by the snapshots used for POD and the eigenvalues exhibit
rapid decay, the projection error can be reasonably expected to quickly approach zero for any parameter value as

he number of basis functions L is increased.
The squared regression error for the stresses can be rearranged,

∥PRB(π ) − P̂
RB

(π )∥2
L2(Ω) =


L∑

l=1

(αl − α̂l)Bl


2

L2(Ω)

=

(
L∑

l=1

(αl − α̂l)Bl ,

L∑
l ′=1

(αl ′ − α̂l ′ )Bl ′

)
L2(Ω)

=

L∑
l=1

L∑
l ′=1

(αl − α̂l)(αl ′ − α̂l ′ ) (Bl , Bl ′)L2(Ω)

=

L∑
l=1

(αl − α̂l)2

2

(35)
= ∥α − α̂∥2,

10
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where the orthonormality of Bl was used in the second last line and ∥ • ∥2 denotes the Euclidean norm. Hence,
the regression error is simply equal to the Euclidean norm of the error of the coefficient vectors. This result is
analogous to the result presented in [56] for the displacement.

3.3. Comparison to neural networks

After the pioneering works by Ghaboussi et al. [25,26] and recent advances in Deep Learning, many papers have
used methods of deep learning to extract a constitutive model from pairs of stress and deformation data by training
a deep neural network (DNN), e.g. [27,30,33,69,70]. Frequently their data is collected from RVE simulations by
applying boundary conditions that fulfill Eq. (14) and solving the microscopic simulation to generate training data,
analogous to what is done in this work. However, one difference is that in this work the stress field is collected
while the other works only collect the averaged stress and dispose of the stress field. A brief comparison between
both approaches is given below:

1. Training: The DNN approach essentially performs a regression on the stress and deformation data. This
means that a mapping from R3×3

→ R3×3 (or R6
→ R6 in the case where the stress and deformation measures

are symmetric) has to be learned. P-PODGPR, on the other hand, uses the correlation of the microscopic
stress field solutions and finds a few uncorrelated coefficients which can be independently learned, i.e. a
mapping from R3×3

→ R or R6
→ R is learned.

2. Implementation: Both surrogate models, after they have been trained, can be easily adopted into any
simulation software as they are both non-intrusive and therefore entirely independent of the software used to
solve the microscale simulation.

3. Evaluation: The DNN approach needs to compute one forward pass through the neural network to get the
effective stress for a given deformation. The effective stiffness can then be computed with one backward
pass with automatic differentiation. However, the microstructural stresses, which are desirable for finding
local stress concentrations and designing improved microstructures, cannot be obtained. In the P-PODGPR
method the stress field is fully obtained by evaluating L GPR models, from which the effective stress can
be computed. The effective stiffness is obtained with Eq. (25) as the GPR model also supports an analytical
way of computing the derivative of αl over the deformation.

4. Results

To demonstrate the performance of P-PODGPR and the influence of the number of basis functions L , number of
samples used for the basis construction Npod, and number of samples used for the regression Nreg, two single-scale
examples with different 2D RVEs are presented. The third example involves a two-scale problem, in which the
results obtained with P-PODGPR are compared with the FE2 solution.

4.1. Single-scale RVE simulation

To measure the accuracy of P-PODGPR on test data, the following relative error measure for the effective stress
is defined:

ϵP̄ :=

P̄HF
−

¯̂PRB


FP̄HF


F

, (36)

here ∥•∥F denotes the Frobenius norm, P̄HF the effective stress from the high-fidelity simulation and ¯̂PRB the
ffective stress resulting from P-PODGPR. The projection error of the basis is attained when ¯̂PRB

= P̄RB, where P̄RB

s the effective stress after projecting the high fidelity solution onto the POD basis when the solution is known. As
he regression error Eq. (35) goes towards zero, ¯̂PRB tends towards P̄RB, so the projection error can be interpreted as
lower bound of the solution from P-PODGPR. All microscopic simulations were conducted with the FE framework
OOSE [71].
11
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Fig. 2. Porous material: (a) The considered microstructure consists of a Neo-Hookean matrix material with a volume ratio of 86%. The
esh consists of 6000 bilinear elements and 6293 nodes. (b) An exemplary deformation with [Ūxx , Ūyy , Ūxy ] = [0.95, 0.95, 0.05]. The

yx-component of the local deformation gradient ranges from [−0.2869, 0.4623] and is hence much larger than the prescribed boundary
eformation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.1.1. Porous material
A porous microstructure as depicted in Fig. 2(a) is considered for the first example, where the pores account

or 14% of the total area. Four-node quadrilateral elements with four quadrature points are employed. The matrix
aterial is modeled as a Neo-Hookean material with material parameters C1 = 1 and D1 = 1. Linear displacement

oundaries with Ū−I ∈ [−0.05, 0.05] are considered. Due to the geometry of the problem, such a deformation leads
o much higher local strains, see Fig. 2(b) for an exemplary deformation with [Ūxx , Ūyy, Ūxy] = [0.95, 0.95, 0.05].
f larger displacements on the boundaries were considered, some pores might close, requiring contact detection. In
his example, the material parameters µ are fixed, hence this problem has three varying parameters.

ata generation. To investigate the number of precomputations needed for an accurate representation, a set of 500
raining snapshots for training P-PODGPR was sampled via a Sobol sequence sampling procedure and another set
f 1000 test snapshots, to evaluate the accuracy of the surrogate model, was generated randomly from a uniform
istribution. It was observed in [72] that Sobol sequence sampling fills the parameter space more evenly as compared
o random sampling and thus provides better results.

igenvalues. The eigenvalues of the correlation matrix for different numbers of training snapshots Npod are plotted
n Fig. 3. For all cases, an exponential decay is observed, indicating the reducibility of the problem. The von Mises
tress of the first three POD basis functions is plotted in Fig. 4. It can be seen that the basis functions specifically
apture the stress concentrations around the pores. Subsequently, L = 20 basis functions are considered which
orresponds to an energy Epod of 99.9996%.

nfluence of Npod and Nreg. For L = 20 basis functions, combinations of Npod ∈ {20, 50, 100, 200, 500} and
Nreg ∈ {50, 100, 200, 300, 400, 500} were investigated. All 1000 test data were evaluated and the resulting mean and

aximum error of the stresses are plotted in Fig. 5. It can be observed that for all cases the mean error is below 0.1%.
rom Npod = 20 to Npod = 50, a significant improvement in the error can be observed. However, for Npod > 50, the
rror only changes marginally. As Nreg is increased, more data becomes available for the regression and therefore
he mapping in Eq. (27) becomes increasingly more accurate. Nevertheless, even using only 50 snapshots for both
asis and regression yields a mean error of 0.1% and a maximum error of roughly 0.65%.

nfluence of L. Using Npod = Nreg = 50, the influence of the number of basis functions L was then investigated.
he relative errors of the effective stress are given in Fig. 6. The projection error is also plotted to compare the

uality of the regression in Eq. (27). As seen from the figure, both the mean and maximum error of the first 8 basis

12
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Fig. 3. Porous material: Eigenvalues of the correlation matrix for different numbers of snapshots Npod used for POD. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Porous material: Von Mises stress of the first three POD basis functions of the microscopic stress field. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Porous material: Validation and effective stress error for different feedforward neural
network architectures. The lowest values in each column have been highlighted.

Architecture Validation loss ϵmean
P̄ ϵmax

P̄

Nh = 1, Nn = 20 2.33 × 10−7 0.0016 0.0199
Nh = 1, Nn = 50 1.72 × 10−7 0.0017 0.0136
Nh = 2, Nn = 20 2.4 × 10−7 0.0019 0.0184
Nh = 2, Nn = 50 1.94 × 10−7 0.0018 0.0166

functions nearly perfectly match. However, for a larger number of basis functions, the discrepancy slowly grows
and the error flattens. Generally, the POD coefficients get increasingly more oscillatory with increasing number
and hence require more data for an accurate regression. To show that with increasing Nreg, the regression error
decreases and approaches the projection error, the error over L for Npod = 50 with Nreg = 500 is also plotted in

ig. 7. For this case, the mean error matches the projection error for 13 basis functions, while the maximum error
lso gets much closer to the projection error. Note that the maximum error of P-PODGPR is sometimes slightly
ower than the projection error. This can be explained with errors in the regression that lead to a stress field which
fter averaging ends up closer to the high fidelity solution than the best projection. This is entirely random and as

Nreg is further increased, the regression error will tend towards zero and the curves will match eventually.

omparison with neural networks. For comparison, a deep forward neural network with different architectures
as trained with the available deformation and stress data collected from the RVE simulations. The stress field
13
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Fig. 5. Porous material: Comparison of stress errors for different combinations of Npod and Nreg for L = 20. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Porous material: Comparison of stress errors for different L with Npod = Nreg = 50. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Porous material: Comparison of stress errors for different L with Npod = 50 and Nreg = 500. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
14
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Fig. 8. Fiber reinforced material: The considered microstructure consisted of a Neo-Hookean matrix material (gray) and a Neo-Hookean
fiber material (red). The fiber volume fraction was 12.56%. The mesh consisted of 4321 eight-node elements and 13080 nodes.

data was averaged to give effective stresses. Regarding the network architecture, different neural networks with
Nh = {1, 2} hidden layers with each Nn = {20, 50} neurons were tested. The input layer and output layer both
had 3 and 4 neurons respectively, one for each component of the stretch tensor and effective stress. Apart from the
output layer an ELU activation function was applied after each layer. Before training, the deformation and stress
data were normalized to [0, 1]. Then, all available Nreg = 500 training snapshots and all 1000 test snapshots were
set as training and validation dataset for the optimization. The network was trained using a mean squared error
loss function, the Adam optimizer with a learning rate of 1 × 10−4 and a batch size of 32 for 10000 epochs. The
validation loss and relative errors ϵP̄ obtained for each architecture are given in Table 1, where the best architecture
is highlighted. All architectures produce similar results with the second architecture Nh = 1, Nn = 50 yielding
the best results with an average and maximum error of 0.17% and 1.36%. On the other hand, P-PODGPR already
yields a lower mean and maximum error of around 0.065% and 0.65% when using only 50 training data, showing
that P-PODGPR can utilize the information of each snapshot more efficiently than the neural network. When 500
snapshots are used for the regression in P-PODGPR, a mean and max error of less than 0.02% and 0.2% is achieved,
hence outperforming the neural network greatly.

4.1.2. Fiber reinforced material
In the second example, the considered microstructural RVE consists of two different phases: a soft matrix and a

stiff fiber material. Both materials are Neo-Hookean, but the matrix has parameters C1 = 1, D1 = 1, while the fiber
as variable parameters C1 = D1 ∈ [50, 150], corresponding to a Young’s modulus that is 50–150 times higher
han the matrix, with the Poisson ratio remaining the same (ν = 0.25), cf. Eq. (12). The geometry used is depicted
n Fig. 8, where the matrix (gray) completely surrounds the fiber (red). Eight node quadrilateral elements with four
uadrature points are employed. The volume fraction of the fiber is 12.56%. Linear displacement boundaries with

Ū −I ∈ [−0.3, 0.3] and fiber parameters of C1 = D1 ∈ [50, 150] are considered. Therefore, the considered problem
as 4 varying parameters.

ata generation. A set of 1000 training snapshots and 1000 test snapshots were generated. The first set contained
he 24

= 16 corner points of the parameter domain and the remaining points were sampled from a Sobol sequence,
hile the second set was generated from a random uniform distribution.

igenvalues. The eigenvalues of the correlation matrix for different numbers of training snapshots are plotted in
ig. 9. Similar to the last example, for all cases, an exponential decay can be observed, showing the reducibility
f the problem. The von Mises stress of the first three POD basis functions are plotted in Fig. 10. Subsequently,

L = 20 basis functions are considered which correspond to an energy Epod of 99.9901%.

nfluence of Npod and Nreg. For L = 20 basis functions, combinations of Npod ∈ {20, 50, 100, 200, 500} and
Nreg ∈ {100, 200, 300, 400, 500, 1000} were tested. The mean and maximum error plots can be seen in Fig. 11.
t can be observed that for all cases with N > 50, the mean error is below 1%. The mean error improves as more
reg
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T. Guo, O. Rokoš and K. Veroy Computer Methods in Applied Mechanics and Engineering 384 (2021) 113924

e
t
t
s

I
a
p
f
e
1

C
a
t
c
p
P
s

Fig. 9. Fiber reinforced material: Eigenvalues of the correlation matrix for different numbers of snapshots used for POD. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Fiber reinforced material: Von Mises stress of the first three POD basis functions of the microscopic stress field. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

snapshots were considered for the POD basis, suggesting that there was still new information in the snapshots, which
fine-tune the optimal basis. The mean error reaches around 0.04% for Nreg = 500 snapshots with a maximum
rror of around 1%. Increasing Nreg from 500 to 1000 does not improve the mean error significantly, meaning
hat the projection error has already been reached with 500 snapshots and L = 20 basis functions. Weighing
he approximation error over the number of full computations needed, Npod = Nreg = 200 is considered in the
ubsequent analysis.

nfluence of L. Using Npod = Nreg = 200, the influence of L is investigated. The mean and maximum error of the
pproximation error over the number of basis functions L used are shown in Fig. 12. The projection error is also
lotted to reveal the quality of the regression of Eq. (27). As seen from the figure, the mean and maximum error
or the first 11 basis functions match the projection error quite well, and afterwards flatten out, similar to the last
xample. When the number of snapshots Nreg is increased to 500, the mean error matches the projection error for
6 basis functions, as seen in Fig. 13, while the maximum error also slightly improves.

omparison with neural network. Similarly to the last example, deep forward neural networks with different
rchitectures were trained for comparison. The available 500 training data and 1000 testing data were used for
raining and validation. The same network architecture configurations as before were tested, with one additional
ombination Nh = 2, Nn = 100. The results are given in Table 2. The fourth architecture Nh = 2, Nn = 50
erforms the best with an average error of 0.39% and a maximum error of 2.06%. Same as for the previous example,
-PODGPR outperforms the neural network. With only 200 training snapshots, P-PODGPR achieves roughly the
ame accuracy as the NN using 500 snapshots. With 500 employed snapshots, P-PODGPR reaches a mean and
16
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Fig. 11. Fiber reinforced material: Comparison of stress errors for different combinations of Npod and Nreg for L = 20. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Fiber reinforced material: Comparison of stress errors for different L with Npod = 200 and Nreg = 200. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Fiber reinforced material: Comparison of stress errors for different L with Npod = 200 and Nreg = 500. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
17
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Table 2
Fiber reinforced material: Validation loss and effective stress error for different
feedforward neural network architectures. The lowest values in each column have
been highlighted in bold face.

Architecture Validation loss ϵmean
P̄ ϵmax

P̄

Nh = 1, Nn = 20 1.7 × 10−6 0.0077 0.0368
Nh = 1, Nn = 50 8.55 × 10−7 0.0056 0.0289
Nh = 2, Nn = 20 5.36 × 10−7 0.0047 0.0176
Nh = 2, Nn = 50 2.97 × 10−7 0.0039 0.0206
Nh = 2, Nn = 100 7.91 × 10−7 0.0052 0.0315

Fig. 14. Fiber reinforced material with periodic boundary conditions: Comparison of stress errors for different L with Npod = 200 and
Nreg = 500. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

maximum error of 0.04% and 1%, hence outperforming the neural network, while also being able to recover the
microscopic stress field.

Remark on periodic boundary conditions. For the same microstructure (Fig. 8), an analogous analysis using periodic
boundary conditions was considered. In contrast to linear boundary conditions, the fluctuation displacement field w

is assumed to be periodic on the RVE boundary. The obtained results regarding the approximation quality are shown
in Fig. 14, where Npod = 200 and Nreg = 500 was chosen. In comparison to Fig. 13, the results are comparable
and hence it can be concluded that P-PODGPR works independently of the chosen boundary conditions.

4.2. Two-scale simulation

To show the performance of P-PODGPR in a two-scale simulation, the learned constitutive model for the fiber
reinforced RVE with Npod = Nreg = 200 is embedded inside a FE solver. For the macroscopic problem the Cook’s
membrane, consisting of the fiber reinforced RVE, is chosen. The geometry and mesh of the membrane are given
in Fig. 15. The macroscopic mesh consists of 200 bilinear quadrilateral elements with 4 quadrature points. The
quadrature points A and B, as marked on the figure, denote points in which the microscopic stress field is compared
against the reference solution. The reference solution is obtained by running a full two-scale FE2 simulation. The
left side of the sample is fixed and the right side is loaded in five time steps with a vertical traction of 0.1. The
material parameters of the fiber are taken to be fixed with C1 = D1 = 100 in this example.

The yx-component of the macroscopic stress P̄yx obtained by the full FE2 and FE with P-PODGPR simulation
are given in Fig. 16, while the microscopic stress Pyx at point A and B are shown in Figs. 17 and 18 respectively.
The relative error defined as ϵPyx := |PFE2

yx − PROM
yx |/

⟨
|PFE2

yx |
⟩
, with

⟨
|PFE2

yx |
⟩

the averaged absolute stress, is also
shown (Figs. 16(c), 17(c), 18(c)). As can be seen, the shape of the stress field of both solutions is indistinguishable.
18
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Fig. 15. Cook’s membrane: The left side was fixed while a traction in the vertical direction of 0.1 was applied along the right side. The
mesh consisted of 200 bilinear elements and 231 nodes. The microstructural stress field at the marked quadrature points A and B will be
shown later.

Fig. 16. Cook’s membrane: Macroscopic stress field. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Even though the relative errors for the microscopic problem reaches a maximum of 7% near the interface of matrix
and fiber, after homogenization the highest error reduces to merely 1%. This discrepancy is due to the fact that the
method tries to reduce the L2-norm of the error in the stress field and therefore allows locally high errors.

Using 48 cores,1 the FE2 simulation takes around 100 min while the simulation with P-PODGPR is completed
ithin 1 min on a single core,2 resulting in a speedup of about three orders of magnitude. For P-PODGPR, 200
VE simulations have to be pre-computed, which takes less than one hour on a single core. Performing the POD
nd GPR to construct P-PODGPR takes around one minute.

1 Intel Xeon Platinum 8260.
2 Intel Core i7-8750H.
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Fig. 17. Cook’s membrane: Microscopic stress field at Point A. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 18. Cook’s membrane: Microscopic stress field at Point B. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

. Conclusions

In this work, the proper orthogonal decomposition (POD) has been applied on the microscopic stress field to
nd a reduced basis. A direct mapping from the loading and material parameters to the POD basis coefficients
as built with Gaussian process regression (GPR). For the two considered microstructures, involving a porous and
fiber-reinforced material, the proposed method captured the stress field accurately with a mean error of 0.1%,

ven in the case of varying material parameters. Finally, the learned constitutive model was employed inside a
acroscopic simulation and compared to a full scale FE2 simulation, reaching high accuracy on both macro- and
icroscale, while gaining a speedup of the order of 103.
Although the examples presented here are two dimensional, the theory has been derived for three dimensions and

an readily be applied to 3D problems. Due to the non-intrusive nature of the method, it can be easily implemented
nto any existing finite element solver. It is noted that the framework is not limited to POD and GPR, but in fact
ny method for discovering the reduced basis and any regression method can be employed.

This novel method has the potential to open up new ways of material design, as the construction of the surrogate
odel only requires a relatively small dataset and the surrogate can cover a large range of microstructural parameters.
ince the derivatives with respect to the parameters are at hand, it is furthermore possible to define and solve

acroscopic optimization problems. Moreover, the microscopic stress field can be fully recovered and visualized in

20
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order to make informed modifications of the microstructure to relieve local stress concentrations and remove flaws.
Currently, works on more complicated microstructures are being conducted.
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