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A B S T R A C T

In recent years, there has been a growing interest in understanding complex microstructures
and their effect on macroscopic properties. In general, it is difficult to derive an effective
constitutive law for such microstructures with reasonable accuracy and meaningful parameters.
One numerical approach to bridge the scales is computational homogenization, in which a
microscopic problem is solved at every macroscopic point, essentially replacing the effective
constitutive model. Such approaches are, however, computationally expensive and typically
infeasible in multi-query contexts such as optimization and material design. To render these
analyses tractable, surrogate models that can accurately approximate and accelerate the
microscopic problem over a large design space of shapes, material and loading parameters
are required. In this work, we develop a reduced order model based on Proper Orthogonal
Decomposition (POD), Empirical Cubature Method (ECM) and a geometrical transformation
method with the following key features: (i) large shape variations of the microstructure are
captured, (ii) only relatively small amounts of training data are necessary, and (iii) highly non-
linear history-dependent behaviors are treated. The proposed framework is tested and examined
in two numerical examples, involving two scales and large geometrical variations. In both cases,
high speed-ups and accuracies are achieved while observing good extrapolation behavior.

1. Introduction

Driven by advances in additive manufacturing and tailorable effective properties of metamaterials, there has been a growing
nterest in understanding structure–property relationships of complex microstructures. These microstructures can typically be
escribed by a few shape parameters, leading to distinct types of effective behavior. To investigate such structure–property
elations and to find the optimal shape for a given application, simulations are often considered. These simulations are in general
omputationally expensive or even intractable for direct numerical simulation, especially for large-scale engineering applications,
ince considerably fine meshes are required to capture the complex microstructural geometry. By employing multi-scale methods
ased on computational homogenization [1,2] or domain decomposition methods [3], such large-scale problems can be separated
nto many smaller subproblems, thus rendering them amenable for efficient numerical simulation.
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Domain Decomposition (DD) methods are particularly useful when the micro- and macroscale are of comparable size, i.e., in the
bsence of a clear scale separation. They can be categorized in overlapping and non-overlapping DD methods. Regarding the latter,
he domain is divided into subdomains and coupled at the interfaces. One notable method is the so-called FETI-DP [4], where the
roblem is solved in the corner points of each subdomain and in the Lagrange multipliers that enforce the interface continuities. To
ncrease the computational efficiency, model order reduction methods were combined with DD. In the Reduced Basis Element (RBE)
ethod [5], each subdomain is accelerated with a reduced basis and the interfaces are coupled weakly in a non-conforming manner
ith Lagrange multipliers. In [6], the Static Condensation Reduced Basis Element (SCRBE) was introduced where the internal degrees
f freedom of each subdomain are represented by a reduced basis and condensed out, resulting in a conforming approximation
pace on the interfaces (also referred to as ports in this context). Constructing optimal local approximation spaces for these ports
n two-component systems was discussed in [7], and finding them by local solutions of the Partial Differential Equation (PDE) with
andom boundary conditions was proposed in [8]. In the context of solid mechanics, recent applications of such methods include,
or example, [9,10]. For a more comprehensive overview of concepts in localized model order reduction, the interested reader is
eferred to [11].

If scale separation is assumed, i.e., when the length scale of the typical microstructural features is much smaller than that of
he macrostructure, first-order computational homogenization can be employed. Here, the behavior of the microstructure dictates
he (average) constitutive behavior of an effective macrostructural continuum model. By defining a Representative Volume Element
RVE) which models the fine-scale geometry of the microstructure in full detail, a coarse-grained representation of the macrostructure
ith a much coarser discretization can be assumed at the macroscale. At every macroscopic integration point, the macroscopic strain

s used to specify a microscopic boundary value problem which, after solution, returns the effective stress and stiffness. Since a PDE
eeds to be solved at every macroscopic Gauss integration point, this methodology is still computationally expensive, and efficient
ays for its solution are needed.

Several approaches to tackle this problem have been reported in the literature. One class of methods are based on data-driven
educed order models. For these methods, the microscopic problem is solved several times to generate training data, and the data
s subsequently used to learn an effective constitutive model. After training, the microscopic solver is not required anymore and
eplaced by the learned constitutive model. Several methods were proposed for elastic material models, see, e.g., [12–15], and
lso for history-dependent microstructures [16,17]. Even though highly efficient and accurate reduced order models can potentially
e obtained, the extension of the methods [12–15] for inelastic materials is challenging, and the methods for history-dependent
icrostructures [16,17] often require vast amounts of data. To learn an elasto-plastic material model, Mozaffar et al. [16] generated
p to 15000 deformation paths each of 100 load steps. 9000 deformation paths of up to 2000 steps each were generated by Wu
t al. [17].

Another class of methods attempts to accelerate the existing microscopic solver. For instance, if the Fast Fourier Transform
FFT) [18,19] is used to simulate the microstructure, its solution can be accelerated by the (nonuniform) Transformation Field
nalysis (see, e.g., [20,21]), or Self-consistent Clustering Analysis [22,23]. One disadvantage of FFT is that geometrical parameter-

zations of the RVE cannot be directly treated and, hence, sensitivities for material optimization cannot be directly computed. If the
icroscopic problem is solved via the Finite Element (FE) method, the resulting multi-scale formulation is referred to as FE2 [24–

26]. By directly solving the microscopic PDE with FE, material or shape parameterizations can be considered in a straightforward
manner, making the approach more suitable for inverse problems and optimization. To speed up the microstructural simulation,
Proper Orthogonal Decomposition (POD) [27,28] can be utilized to find a reduced set of basis functions; the method then computes
the Galerkin projection of the solution onto the space spanned by the snapshots. Although POD generally requires many full-order
solves for training, it typically works well for all input parameters. In the context of first-order homogenization, POD was first
applied in Yvonnet et al. [29] for a hyper-elastic RVE, and later explored in Radermacher et al. [30] for an elasto-plastic RVE
under small strains. However, due to the non-linearities of the microscopic problem, the speed-ups were limited since the global
force vector and stiffness matrix must be assembled by full integration in every microscopic Newton iteration. To address this
issue, a further reduction called hyperreduction is required, which aims at finding an efficient way of assembling microstructural
force and stiffness quantities. Notable hyperreduction methods are Empirical Interpolation Method (EIM) (see, e.g., [31]), a variant
of EIM called Discrete Empirical Interpolation Method (DEIM) (see, e.g., [32]), energy-based mesh sampling and weighting [33],
reduced integration domain [34], empirical quadrature procedure [35], and Empirical Cubature Method (ECM) [36]. EIM and DEIM
interpolate the non-linear integrand of the global force vector such that the integrals can be pre-computed. In [37,38], DEIM was used
successfully to accelerate the solution of the microscopic PDE. However, these works only discussed the solution of the microscopic
PDE and did not derive the effective stress and stiffness quantities required for the macroscopic problem. A possible disadvantage
of EIM and DEIM is that they lead to non-symmetric tangent matrices, which might result in convergence issues, observed in,
for instance, [38,39]. The rest of the above-mentioned hyperreduction methods aim at approximating the integrals by finding a
subset of integration points with corresponding positive weights among the set of all integration points used in the formulation of
the microstructural PDE. This has the advantage that the stiffness matrix is always symmetric and at least positive semi-definite
(in practice usually positive definite unless instabilities occur), ensuring a good convergence of the microscopic problem. Example
applications of hyperreduction methods have been successfully employed in two-scale simulations in [40], where an elasto-plastic
composite RVE under large deformations was considered. In [41], a damage model for a composite RVE under small deformations
was shown. While both works obtained accurate results and successfully accelerated the forward simulations of a two-scale problem,
such formulations were limited to fixed microstructures only, i.e., did not account for possible parameterizations. In order to allow for
optimization of microstructures, the surrogate model needs to be extended to a wide range of different design parameters (including
geometrical as well as material).
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This work aims to address this gap, by developing a hyper-reduced surrogate model for geometrically parameterized microstruc-
ures, to enable (shape) sensitivity analysis and optimization of materials. Furthermore, we intend to provide a detailed analysis
f the reduced RVE problem for arbitrary loading paths and geometries and elucidate possible issues due to reduction. Our main
ontributions are:

1. development of a hyper-reduced POD model for a family of geometrically parameterized microstructures, by employing a
geometrical transformation method [42] and by extending the ECM algorithm to geometrical parameters,

2. consistent derivation of the effective stress and stiffness of the hyper-reduced model,
3. an empirical analysis of the accuracy of the surrogate model for elasto-plastic RVEs under large deformations for different

geometries and loading conditions,
4. a quantitative comparison of a two-scale example with continuous change in microstructural heterogeneities.

The remainder of this paper is organized as follows. In Section 2, the microscopic problem arising in first-order computational
omogenization is briefly summarized, together with the computation of the effective quantities. Section 3 covers in-depth
evelopment of the reduced order model with particular focus on the empirical cubature method for geometrically parameterized
icrostructures, and includes a detailed derivation of the effective stress and stiffness. In Section 4, the proposed method is examined

nd tested in detail, first for a single RVE and then also for a full two-scale problem. Finally, a summary on the findings and
oncluding remarks are given in Section 5.

In this work, the following notational convention is adopted. Italic bold symbols are used for coordinates X and vectorial or
ensorial fields, such as the displacement field u or stress field P . Upright bold symbols are used for algebraic vectors and matrices,
uch as the global stiffness matrix K or the coefficients of the discretized displacement field u. A field quantity u for given parameters
� is denoted as u(X;�). Given second-order tensors A and B, fourth-order tensor C , and vector v, the following operations are used:
AB)ik = AijBjk, A ∶ B = AijBij , A ∶ C ∶ B = AijCijklBkl and (Av)i = Aijvj , where the Einstein summation convention is implied.

. Formulation of the microscopic problem

In multiscale schemes based on first-order homogenization, the macroscopic problem is governed by the standard linear
omentum balance, but the macroscopic constitutive model (relating strains to stresses and stiffness) is replaced by a microscopic
DE (again governed by the standard linear momentum balance) which is defined on an RVE. By prescribing the macroscopic
eformation gradient on the microscale, the PDE can be solved and an effective stress and stiffness returned to the macroscopic
olver, see Fig. 1. For applications such as microstructure optimization, it is reasonable to additionally introduce a parameterization
f the RVE in order to compute the sensitivities with respect to design variables. The microscopic boundary value problem is
ormulated below on a parameterized domain, as is usually the case in shape optimization. For brevity, the dependence on the
acroscopic coordinates is omitted and a fixed macroscopic material point is assumed unless otherwise specified.

.1. Boundary value problem

Consider a family of domains 
� ˇ Rd with space dimension d = 2; 3, parameterized by geometrical parameters �, and spanned
y a position vector X� ∈ 
�. In Fig. 1, an example parent domain with a circular inclusion 
p is geometrically parameterized
nd mapped to two distinct parameterized domains with elliptical inclusions, 
�1 and 
�2 . The volume and the topology of the

domain ð
�ð are assumed to remain fixed for all parameters (the outer boundaries of the RVE domain are fixed while the shape
of the interior geometry can change). With the assumption of scale separation between macro- and microscale, the microscopic
displacement field on the parameterized domain u(X�) can be written as the summation of a mean field �u(X�) and a fluctuation
field w(X�), i.e., u(X�) = �u(X�)+w(X�). The mean field is fully specified through �u(X�) ∶= ( �F −I)X�, where �F is the macroscopic
deformation gradient tensor and I is the identity tensor. The total deformation gradient tensor F is defined as

F (w(X�)) ∶= I + )u
)X� = �F + )w

)X� : (1)

he governing microscopic PDE is given as

DivP T (F (w(X�))) = 0 on 
�;

w periodic on )
�;
(2)

here Div(∙) is the divergence operator with respect to X� and P denotes the second-order first Piola–Kirchhoff (1PK) stress tensor.
o constitutive model is specified at this point, although we assume that the stress P is a non-linear function of the deformation

gradient F (or its history). The weak form of the problem is then: given the macroscopic deformation gradient �F , find the fluctuation
field w∗ ∈ V ∶= {v ∈ (H1(
�))d ð v periodic on )
�} that fulfills

G(w; �w) ∶= ˚
�
)�w
)X� ∶ P

�

�F + )w
)X�

�

dX� !
= 0; ∀�w ∈ V ; (3)

where the integral bounds depend on the parameters �, �w denotes a test function, and H1(
�) is a Hilbert space with square
ntegrable functions and square integrable derivatives. The inner product in V is defined as

(u; v)V ∶=
�

u � v + )u ∶ )v �

dX�: (4)
˚
� )X� )X�

3
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Fig. 1. Two-scale problem based on first-order homogenization. At every macroscopic point, a microscopic simulation is defined through deformation gradient
�F and shape parameters �, and solved to obtain an effective stress �P and stiffness �A. For different macroscopic points, different parameterized microstructures
an be considered through �. As an example of a family of geometrically parameterized microstructures, a parent domain with a circular inclusion 
p (center),
an be mapped onto parameterized domains 
�1 (left) and 
�2 (right) with mapping ��1

and ��2
.

From Eq. (3), it is apparent that the macroscopic deformation gradient �F represents the external loading, while the fluctuation
displacement field w balances the system. To simplify the problem in Eq. (3) and remove the parameter dependence of the
integral bounds, a parent domain 
p is defined. To this end, we assume that there exists a parameter-dependent diffeomorphism
�� ∶ 
p � 
�;Xp › X�, see Fig. 1. Using integration by substitution, the problem of Eq. (3) can be restated as follows: given the
macroscopic deformation gradient �F , find w∗p ∈ Vp ∶= {v ∈ (H1(
p))d ð v periodic on )
p} that fulfills

Gp(wp; �wp) ∶= ˚
p

0

)�wp

)Xp F
−1
�

1

∶ P
0

�F + )wp

)Xp F
−1
�

1

ó

ó

ó

det F �
ó

ó

ó

dXp = 0; ∀�wp ∈ Vp; (5)

ith the transformation gradient F � ∶=
)��

)Xp and dX� = ó

ó

ó

det F �
ó

ó

ó

dXp. The superscript p is used to denote quantities pertinent to
he parent domain, e.g., w(X�) = (wý��)(Xp) = wp(Xp). To iteratively solve the non-linear problem in Eq. (5), a linearization using

the Gateaux derivative around the current state wp in direction �wp ∈ Vp is required and can be written as,

)Gp(wp + ��wp; �wp)
)�

ó

ó

ó

ó�=0
= ˚
p

0

)�wp

)Xp F
−1
�

1

∶ A
0

�F + )wp

)Xp F
−1
�

1

∶
0

)�wp

)Xp F
−1
�

1

ó

ó

ó

det F �
ó

ó

ó

dXp; (6)

here A ∶= )P
)F

is the fourth-order stiffness tensor. Once the transformation map �� is known, Eq. (3) can be solved on the parent
domain using Eqs. (5) and (6). Further details on how to find these transformations for a range of geometrical parameters are
provided in Section 3.4.

By following a standard Galerkin finite element discretization for wp ≈ wp
h ∈ Vp

h ˇ Vp, with dimVp
h = N , the number of degrees

of freedom of the dicretization, the internal force vector f ∈ RN and global stiffness matrix K ∈ RN×N can be derived from Eqs. (5)
and (6), resulting in the following non-linear system of equations

f (w) = 0; (7)

where w ∈ RN is the column vector of unknown coefficients of the discretized fluctuation field. This problem can be solved with
the Newton method, i.e.,

K(wm)�w = −f (wm);

wm+1 = wm + �w;
(8)

where m is the Newton iteration number and Eq. (8) is repeated until æf (wm)æ2 f "newton with "newton a user-defined tolerance. For
more details on the finite element method and discretization of weak forms, we refer to [43].
4
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2.2. Effective quantities

For conciseness of notation, the following abbreviations are introduced to denote quantities after the solution w∗p has been
obtained:

P ∗p ∶= P
0

�F + )w∗p

)Xp F
−1
�

1

; (9)

A∗p ∶= A
0

�F + )w∗p

)Xp F
−1
�

1

: (10)

pon obtaining solution w∗p from Eq. (5), the effective stress is computed as

�P ∶= ð
p
ð

−1
˚
p

P ∗p
ð det F �ðdXp; (11)

and the effective stiffness (in index notation) as

�Aijkl ∶=
) �Pij
) �Fkl

=ð
p
ð

−1 )
) �Fkl ˚
p

P ∗p
ij ð det F �ðdX

p

=ð
p
ð

−1
˚
p

A∗p
ijmn

H

Imnkl +
)

) �Fkl

H

)w∗p
m

)Xr

I

�

F−1
�

�

rn

I

ð det F �ðdXp;

(12)

here Imnkl ∶= �mk�nl is the fourth-order identity tensor. To determine )
) �Fkl

H

)w∗p
m

)Xr

I

, Eq. (5) is differentiated with respect to �F .

For one particular component �Fkl (where the indices k and l are assumed to be temporarily fixed), the differentiation yields

˚
p

0

)�wp

)Xp F
−1
�

1

∶ A∗p ∶
0

)qkl
)Xp F

−1
�

1

ó

ó

ó

det F �
ó

ó

ó

dXp = −
0

˚
p

0

)�wp

)Xp F
−1
�

1

∶ A∗p ó
ó

ó

det F �
ó

ó

ó

dXp
1

∶ Ekl ; (13)

here a new auxiliary vector field qkl ∶=
)w∗p

) �Fkl
∈ Vp has been defined (reflecting the sensitivity of the microfluctuation field with

respect to the change of the applied macroscopic loading), and Ekl ∈ Rd×d is a second order tensor with all entries zero, except for
he kl-th entry which is 1. The linear tangent problem of Eq. (13) is then solved for all combinations k; l = 1;… ; d to obtain qkl for

each component of �F .
Although not utilized in this work, the sensitivities of the effective stress �P with respect to the geometrical parameters �, which

are required for applications such as shape optimization, can be computed with the geometrically parameterized formulation of the
RVE as follows (in index notation),

) �Pij
)�k

= ð
p
ð

−1
˚
p

‘

r

r

r

p

A∗p
ijmn

‘

r

r

r

p

)
)�k

H

)w∗p
m

)Xr

I

�

F−1
�

�

rn
+
)w∗p

m
)Xr

)
�

F−1
�

�

rn
)�k

a

s

s

s

q

ð det F �ð + P
∗p
ij

)ð det F �ð
)�k

a

s

s

s

q

dXp: (14)

he integrand is complicated due to the derivatives of F −1
� and ð det F �ð, but in principle these derivatives can be computed for a

iven geometrical mapping ��. If the effective stress �P can be assumed to vary smoothly with the parameters �, which may be a
easonable assumption for smoothly varying shapes using, for instance, splines, finite differences can be used to approximate these
ensitivities.

. Surrogate modeling

Since the microscopic problem has to be solved at every macroscopic quadrature point, the solution of the microscopic PDE must
e efficient. Solving it directly using FE is in general too computationally expensive, and, hence, the microscopic solver must be
ccelerated. In this section, a surrogate model for the geometrically parameterized microscopic PDE is developed by employing the
educed Basis Method (RBM) [27] to reduce the number of degrees of freedom and the Empirical Cubature Method (ECM) [36]

o reduce the number of quadrature points. The key idea is to construct the surrogate model on the parent domain 
p, adapt it to
ach geometry 
�, and then solve the reduced problem.

.1. Reduced basis method

For complex problems and geometries, typically a fine mesh is required for FE, leading to a high-dimensional solution space
p
h for the fluctuation displacement field wp with dimVp

h = N . The idea of the RBM is to approximate the field with global
arameter-independent basis functions and parameter-dependent coefficients, i.e.,

wp(Xp; �F ;�) ≈
N
É

an( �F ;�)�n(Xp); (15)

n=1

5
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where N is the number of basis functions, ideally much smaller than the dimension of the FE space, i.e., N ~ N . The basis functions,
{�n}Nn=1, span a subset of Vp

h and can be obtained by applying proper orthogonal decomposition (POD) on a set of pre-computed
full solutions for different parameter values. Additionally, they are orthonormal with respect to Vp, i.e.,

(�m;�n)Vp = �mn; (16)

where �mn denotes the Kronecker delta. By utilizing the POD space for both the trial and test space and inserting wp from Eq. (15)
into Eqs. (5) and (6), the components for the reduced internal force vector fPOD ∈ RN and reduced global stiffness matrix
KPOD ∈ RN×N can be derived as

fPOD
i (a) ∶= ˚
p

0

)�i
)Xp F

−1
�

1

∶ P

H

�F +

H N
É

n=1
an
)�n
)Xp

I

F −1
�

I

ó

ó

ó

det F �
ó

ó

ó

dXp; (17)

KPOD
ij (a) ∶= ˚
p

0

)�i
)Xp F

−1
�

1

∶ A

H

�F +

H N
É

n=1
an
)�n
)Xp

I

F −1
�

I

∶
0 )�j
)Xp F

−1
�

1

ó

ó

ó

det F �
ó

ó

ó

dXp; (18)

here a = [a1;… ; aN ]T is the column vector of unknown coefficients to be solved for, and i; j = 1;… ; N span over all basis functions.
nalogously to Eqs. (7) and (8), the resulting non-linear system of equations

fPOD(a) = 0 (19)

an be solved using Newton method:

KPOD(am)�a = −fPOD(am);
am+1 = am + �a:

(20)

.2. Empirical Cubature method

Even though the solution field and linear system of equations have been reduced to dimension N ~ N , computing the
omponents of the force vector in Eq. (17) and global stiffness matrix in Eq. (18) still requires integrating over the RVE. For the full
ntegration, a numerical quadrature rule (usually based on Gauss quadrature) with integration points and corresponding weights
( �Xq ; �wq)}

�Q
q=1, where �Q is the total number of integration points, is employed, i.e.,

fPOD
i (a) ≈

�Q
É

q=1
�wq

L

0

)�i
)Xp F

−1
�

1

∶ P

H

�F +

H N
É

n=1
an
)�n
)Xp

I

F −1
�

I

ó

ó

ó

det F �
ó

ó

ó

M

ó

ó

ó

ó

ó

ó
�Xq

; (21)

or i = 1;… ; N . For a fine mesh, �Q is very large and thus evaluating Eq. (21) leads to high computational costs. To address this
ssue, we employ the Empirical Cubature Method (ECM), which was proposed in Hernández et al. [36] for a fixed geometry, and
xtend it to parameterized geometries.

The idea of ECM is to find a subset of points {Xq}
Q
q=1 ˇ { �Xq}

�Q
q=1 with Q ~ �Q among the set of all integration points with corre-

ponding weights {wq}
Q
q=1 that approximates Eq. (21) up to a user-defined error ". To find such a subset that approximates Eq. (21)

ell for all admissible geometrical parameters �, Eq. (21) is first rewritten as

fPOD
i (a) =

�Q
É

q=1
�wq

b

f

f

f

f

f

d

)�i
)Xp ∶

H

P

H

�F +

H N
É

n=1
an
)�n
)Xp

I

F −1
�

I

F −T
�

ó

ó

ó

det F �
ó

ó

ó

I

«›››››››››››››››››››››››››››››››››››››fl›››››››››››››››››››››››››››››››››››››‹
W ∶=

c

g

g

g

g

g

e

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó
�Xq

=
�Q

É

q=1
�wq

4

)�i
)Xp ∶ W (Xp; �F ;�)

5

ó

ó

ó

ó

ó
�Xq

;

(22)

where the weighted stress W is defined. To remove the parameter dependence of the integrand in Eq. (22), the weighted stress is
approximated by another reduced basis, i.e.,

W (Xp; �F ;�) ≈
L
É

l=1
�l( �F ;�)Bl(Xp); (23)

where {Bl}Ll=1 is a set of L basis functions obtained using POD, which are orthonormal with respect to L2(
), i.e.,

˚

Bm ∶ BndXp = �mn: (24)

Inserting Eq. (23) into Eq. (22) and rearranging yields,

fPOD
i (a) ≈

L
É

�l( �F ;�)
�Q

É

�wq

4

)�i
)X

∶ Bl
5

ó

ó

ó

ó

; i = 1;… ; N: (25)

l=1 q=1 ó

�Xq
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Since Eq. (25) should be accurate for any choice of coefficients �l( �F ;�), all the N �L terms in Eq. (25) that approximate the integral
have to be approximated as accurately as possible. Hence, the goal becomes to find a subset Q(~ �Q) of integration points with
corresponding weights {(Xq ; wq)}

Q
q=1 that approximates Eq. (25) well, i.e.,

�Q
É

q=1
�wq

4

)�i
)X

∶ Bl
5

ó

ó

ó

ó

ó
�Xq

≈
Q
É

q=1
wq

4

)�i
)X

∶ Bl
5

ó

ó

ó

ó

óXq

; i = 1;… ; N; l = 1;… ; L: (26)

These Q points and corresponding weights are found using a greedy algorithm, the details of which can be found in [36] and are
omitted here. The algorithm is terminated when the mean squared error of all N � L terms is less than a user-defined tolerance ".

Compared to the original algorithm for a fixed geometry, as proposed in [36], the only differences are that the weighted stress
W is employed instead of the stress P and that the parent domain 
p is considered instead of a fixed domain 
. With the ECM
integration rule, the hyper-reduced force vector and global stiffness matrix are computed as

fPODECM
i (a) ∶=

Q
É

q=1
wq

L

0

)�i
)Xp F

−1
�

1

∶ P

H

�F +

H N
É

n=1
an
)�n
)Xp

I

F −1
�

I

ó

ó

ó

det F �
ó

ó

ó

M

ó

ó

ó

ó

ó

óXq

; (27)

KPODECM
ij (a) ∶=

Q
É

q=1
wq

L

0

)�i
)Xp F

−1
�

1

∶ A

H

�F +

H N
É

n=1
an
)�n
)Xp

I

F −1
�

I

∶
0 )�j
)Xp F

−1
�

1

ó

ó

ó

det F �
ó

ó

ó

M

ó

ó

ó

ó

ó

óXq

: (28)

emark 3.1. The computational costs of the ECM greedy algorithm as proposed in [36] increase drastically with the number of
elected integration points, since for every selected point a non-negative least squares problem needs to be solved. As pointed out
n [44], rank-one updates can be used with the least squares solver for better efficiency, and such a refined version of the ECM
lgorithm was presented in [10]. For the numerical examples considered in this work, the original ECM algorithm in [36] was
ufficiently fast and we did not use the algorithmically improved version.

.3. Effective quantities

Once the new set of integration points and weights is found, the integrands of Eqs. (27) and (28) only need to be evaluated at
he points {Xq}

Q
q=1 during the solution of the reduced problem. This also means that the stress and stiffness field are available at

hese points only. To compute the effective quantities, the most straightforward method is to use the integration rule obtained by
CM, i.e.,

�P = ð
p
ð

−1
˚
p

P ∗p
ð det F �ðdXp

≈ ð
p
ð

−1
Q
É

q=1
wq

�

P ∗p
ð det F �ð

�

ó

ó

óXq
:

(29)

ince the stress field P ∗p is known at all integration points {Xq}
Q
q=1, the effective stress can be directly evaluated. The method

ields very accurate results in the examples considered below in Section 4. However, it should be noted that there is currently no
uarantee that the integration rule found by ECM will generally be accurate for the computation of the effective stress. In general,
he effective stress can have two sources of error as compared to the full solution: one comes from the solution of the reduced
ystem and one from an inaccurate integration of the obtained stress field. The ECM integration points are selected such that the
irst error is minimized, but this also indirectly affects the second one to decrease, although not as quickly. This can be observed in
he results of the first numerical example presented in Section 4.1. To ensure an accurate integration of the effective stress, it could
e included into the ECM algorithm as a criterion.

As discussed in Section 2.2, derivatives )w∗p

) �F
are needed to find the effective stiffness �A, see Eq. (12). For each component of

�F , the linear tangent problem of Eq. (13) needs to be solved. By employing the trial space of the fluctuation field for the auxiliary
function qkl, i.e.,

qkl =
N
É

n=1
qn�n(Xp); (30)

and the integration rule found by ECM, the following linear system of equations results:

K∗pq = b; (31)

where q = [q1;… ; qN ]T is the column vector of unknowns to be solved for and

K∗p
ij =

Q
É

q=1
wq

40

)�i
)Xp F

−1
�

1

∶ A∗p ∶
0 )�j
)Xp F

−1
�

1

ó

ó

ó

det F �
ó

ó

ó

5

ó

ó

ó

ó

óXq

; (32)

bi = −
‘

r

r

Q
É

wq

40

)�i
)Xp F

−1
�

1

∶ A∗p ó
ó

ó

det F �
ó

ó

ó

5

ó

ó

ó

ó

a

s

s

∶ Ekl : (33)

p

q=1 óXq q
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Note that the matrix K∗p ∈ RN×N is exactly the same as the global stiffness matrix K of Eq. (28) evaluated at the solution w∗p. After
solving the tangent problems, the effective stiffness �A can be computed (in index notation) as

�Aijkl = ð
p
ð

−1
Q
É

q=1
wq

H

)P ∗p
ij

) �Fkl
ð det F �ð

I

ó

ó

ó

ó

ó

óXq

; (34)

where
)P ∗p

) �Fkl
= A∗p ∶

0

Ekl +
0

)qkl
)Xp F

−1
�

11

: (35)

3.4. Auxiliary problem for geometrical transformation

Thus far, the geometrical transformation �� ∶ 
p � 
� has been assumed to be known and has not been discussed in more
detail. However, such transformations are in general not known analytically and have to be found numerically by using, for example,
radial basis functions, see, e.g., [45,46], or mesh-based methods, see, e.g., [42,47]. For each of those methods, an auxiliary problem
arises which needs to be solved. In order to rapidly solve the surrogate model for a wide range of different geometries, it must
therefore also be ensured that the auxiliary problem can be solved rapidly. In this work, the method in [42] is employed, in which
the auxiliary problem is formulated as a linear elasticity problem by defining ��(Xp) = Xp + d(Xp), with d the transformation
isplacement obtained from

Div
0

Caux ∶ 1
2

0

)d
)Xp +

� )d
)Xp

�T11

= 0 in 
p: (36)

In the above equation, Caux is the fourth-order elasticity tensor, fully specified by the Young’s modulus Eaux and Poisson’s ratio
�aux. The boundary conditions for this PDE are problem-dependent and are specified by the geometrical parameters �. For the RVE
problem, the outer boundaries are fixed (d = 0), while d is prescribed on parts of the interior that are parameterized by �. In [42]
the effect of the choice of Eaux and �aux was studied and it was demonstrated empirically that the choice only has a minor effect
on the final approximation quality. Hence, in all numerical examples considered in this work, a Young’s modulus of Eaux = 1 and
Poisson’s ratio �aux = 0:25 is assumed. The auxiliary problem can then be significantly accelerated with the RBM in combination
with a (D)EIM [31,32], resulting in

�A �d = �b(�); (37)

where �A ∈ RNp×Np is the reduced system matrix, �d ∈ RNp is the reduced transformation displacement, �b(�) ∈ RNp is the reduced
forcing vector and Np is the number of geometrical parameters. Since Np is usually small, Eq. (37) can be rapidly solved. From �d, the
transformation gradient F �, its inverse F −1

� , and its determinant det F � can be computed. Moreover, expressions for the derivative
of the inverse and determinant of the transformation gradient F � can be derived, which are needed for computing the sensitivities
with respect to �, see Eq. (14). For more information on the auxiliary problem and its reduction, the reader is referred to [42].

3.5. Summary

The offline–online decomposition for constructing and solving the surrogate model is summarized in Algorithm 1.
Algorithm 1: Offline–online decomposition of the proposed PODECM framework with microstructures parameterized with
xternal loading �F and geometrical features �.
Offline Stage:

1: Define a parent domain 
p and its finite element discretization.
2: Generate parameter samples { �F i;�i}Nsi=1 from a random distribution.
3: For each different set of geometrical parameters �i, solve the auxiliary problem in Eq. (36) to obtain the transformation map
��i .

4: Compute F −1
�i and det F �i for each parameter sample �i, then run full simulations (Eqs. (5) and (6)) for �F i and collect

fluctuation displacement and weighted stress snapshots.
5: Compute POD for the fluctuation displacement and weighted stress, cf. Eqs. (15) and (23).
6: Run ECM algorithm and find integration points and weights, cf. Eq. (26).
7: Assemble the reduced system matrix and forcing vector for the auxiliary problem in Eq. (37) by applying POD and DEIM.

Details are provided in [42].
nline Stage:
1: Given a new parameter set ( �F ∗;�∗), solve reduced auxiliary problem Eq. (37) and compute F −1

�∗ and det F �∗ .
2: Solve reduced problem for �F ∗ with Eqs. (27) and (28).
3: Compute effective stress using Eq. (29).
4: Solve the linear problem Eq. (31) for each component of �F ∗.
5: Compute components of the effective stiffness with Eq. (34).
8
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Fig. 2. Parent with two parameterized domains and simulation mesh. (a) The parent domain consists of a matrix material (blue) with 23 random elliptical
inclusions (orange). The problem has one geometrical parameter � that scales all ellipses uniformly (� = 1 for parent domain). (b) A parameterized domain for
� = 1:2 and (c) for � = 0:5. (d) The considered mesh consists of six-noded triangular elements and contains in total 62,194 degrees of freedom, 15,450 triangular
elements and 46,350 quadrature points.

4. Example problems

The proposed framework, referred to as PODECM, is first tested on a non-linear composite microstructure under various loading
conditions and analyzed in depth regarding its capabilities and accuracy. The RVE consists of an elasto-plastic matrix with stiff
inclusions of variable size and is considered under non-monotonic loading. The surrogate model is analyzed in terms of the number
of basis functions of the fluctuation displacement field N , number of basis functions of the weighted stress L and the ECM integration
error tolerance ". Subsequently, a two-scale problem involving a porous microstructure under non-monotonic loading conditions and
varying porosities is studied to illustrate the accuracy and speed-up of PODECM in a two-scale setting.

All experiments are defined in two dimensions under plane strain conditions. The RVEs are assumed to be of size [0; 1]2 and all
quantities are assumed to be normalized and hence dimensionless. Since the macroscopic deformation gradient �F can always be
decomposed into a rotation �R and a symmetric stretch tensor �U with a polar decomposition, i.e., �F = �R �U , it is sufficient to generate
raining data for the stretch tensor �U , having only 3 independent components (6 in 3D).

To measure the quality of the approximation, the following error measures to compare the full FE simulations against PODECM
olutions are defined:

1. Error of effective stress

� �P =
‡K
k=1 æ

�P PODECM( �Uk) − �P FE( �Uk)æF
‡K
k=1 æ

�P FE( �Uk)æF
; (38)

where �P PODECM( �Uk) and �P FE( �Uk) denote the effective stress obtained with PODECM and FE for �Uk, æ∙æF denotes the Frobenius
norm, K is the total number of loading steps and �Uk is the applied external load at load step k.

2. Error of fluctuation field

�w =
‡K
k=1 æw

PODECM( �Uk) −wFE( �Uk)æV
‡K
k=1 æwFE( �Uk)æV

; (39)

where wPODECM and wFE denote the fluctuation displacement field obtained with PODECM and FE, and æ ∙ æ2V = (∙; ∙)V ,
c.f., Eq. (4). Recall that the integral in Eq. (4) is defined over the parameterized domain 
�.

4.1. Elasto-plastic composite RVE with random stiff inclusions

4.1.1. Problem description
The considered RVE in this example consists of two phases, an elasto-plastic matrix and stiff elastic inclusions. The geometry of

the parent domain is shown in Fig. 2(a), where the volume fraction of the inclusions is 23.4%. For the geometrical parameterization,
one geometrical parameter � = {�} that scales the size of the inclusions uniformly (and is proportional to the volume fraction of
the inclusions) is introduced, see Figs. 2(b) and 2(c) showing two example domains for distinct values of � . The simulation mesh
is depicted in Fig. 2(d), where six-noded quadratic triangular elements are used in conjunction with three quadrature points per
element. In total, the mesh has 62,194 degrees of freedom, 15,450 triangular elements and 46,350 quadrature points.

For the constitutive model of both matrix and inclusion the small-strain J2-plasticity model with linear isotropic hardening is
hosen and extended to large strains with the method presented in Cuitino and Ortiz [48]. The details of the plasticity model are
rovided in Appendix. For the matrix, the following material parameters are selected: a Young’s modulus E = 10, Poisson’s ratio
� = 0:3, yield stress �y0 = 0:2 and hardening constant H = 5. For the inclusions, E = 100 and � = 0:3 are selected, corresponding
o a stiffness contrast ratio of 10 between both components. Since no plastic deformation is assumed for the inclusions, their yield
tress is set to a large value such that yielding never occurs.
9
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Fig. 3. Macroscopic von Mises stress ��mises and amplitude function � plotted over k for � = 1:010, �Uxx = 1:1, �Uyy = 1:0, �Uxy = 0:0. At k = {10; 20; 30; 40},
microstructural von Mises stress fields �mises are shown. The von Mises stress is non-zero at k = {20; 40} due to residual plastic deformation. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Three loading �Uxx, �Uxy, �Uyy and one geometrical � parameters are considered with bounds � ∈ [0:5; 1:2], �Uxx ∈ [0:9; 1:1],
�Uyy ∈ [0:9; 1:1] and �Uxy ∈ [−0:1; 0:1]. Through � , the volume fraction of the inclusions is varied from 5.85% to 33.7%. For each

sample, the macroscopic right stretch tensor �U =
4 �Uxx �Uxy
�Uxy �Uyy

5

is applied to the RVE with �(k) �U , where �(k) is a piecewise linear

amplitude function with load step k ∈ {0; 1;… ; 40}. The chosen amplitude function is shown in Fig. 3 in orange, together with the
volution of the effective von Mises stress for an example with � = 1:010, �Uxx = 1:1, �Uyy = 1:0, �Uxy = 0:0, as well as the local von
ises stress fields at steps k = {10; 20; 30; 40}. Even though only macroscopic strains of up to 10% are applied, local strains reach

alues up to 83%.

.1.2. Results
In total Ntrain = 20 samples are generated from a Sobol sequence to train PODECM whereas 100 testing samples are generated

rom a uniform distribution to test PODECM. Each sample consists of 40 snapshots for each load step.
The accuracy and speed-up of PODECM depends on the number of basis functions used for the fluctuation displacement field
and the number of quadrature points Q. While N is typically chosen directly, Q depends on the choice of the number of basis

unctions used for the weighted stress L and the ECM integration error ".
To study the influence of L on the resulting number of quadrature points Q and mean errors in effective stress and fluctuation

ield on the testing dataset, several combinations of N and L for a fixed " = 10−2 are tested, with resulting errors shown in the
op row of Fig. 4. The projection error (for N basis functions and using full integration) is shown as well. It can be clearly seen
hat the number of quadrature points Q increases drastically with increasing N and L, as more information needs to be integrated
ccurately. In fact, a roughly linear relationship Q ∝ NL can be recognized. For the mean errors, a higher L leads to better results
n average, although we observe that errors fluctuate significantly, and for some values of N a worse approximation is obtained
ith a higher L. This occurs since the ECM algorithm is a greedy algorithm, meaning that it does not necessarily find an optimal

et of integration points. When more basis functions are included into the algorithm, a completely different set of points may be
ound that finally leads to a worse approximation. It can furthermore be observed that the gap between the projection error and the
ODECM solution grows larger for increasing N . This is because the basis functions typically become more oscillatory and difficult
o approximate with higher N , see, e.g., [13,49], and thus require significantly more quadrature points for a good approximation.
t is interesting that the gap for the errors in the fluctuation field are smaller than the ones in the effective stress, i.e., the difference
etween the computed PODECM and the projection errors are much higher for the effective stress as compared to the fluctuation
ield. This happens because the ECM integration points and weights are primarily selected to integrate the weak form accurately,
nd using them to compute the effective stress introduces an additional approximation error, cf. Section 3.3.

Several combinations of N and " for a fixed L = 15 are next tested to study the influence of " on the number of quadrature
oints and approximation errors. Obtained results are shown in the bottom row of Fig. 4. Similarly to the previous analysis, a
ower " leads to more quadrature points Q and a lower mean error in the effective stress and fluctuation field on average, as the
ntegrals are approximated more accurately. Interestingly, lowering the tolerance from 0.01 to 0.001 does not significantly improve
he approximation quality, even though substantially more quadrature points are included, meaning that the errors can be attributed
o the higher modes of the weighted stress (the additional quadrature points barely contain any information). Therefore, choosing
tolerance smaller than " = 0:01 leads to no improvement.

From Fig. 4 we further observe that the errors of the fluctuation field are considerably higher (order of magnitude) than the
rrors of the effective stresses. This results from the fact that the POD basis functions aim to minimize the H1(
p) error, and thus
10




	A reduced order model for geometrically parameterized two-scale simulations of elasto-plastic microstructures under large deformations
	Introduction
	Formulation Of The Microscopic Problem
	Boundary Value Problem
	Effective Quantities

	Surrogate Modeling
	Reduced Basis Method
	Empirical Cubature Method
	Effective Quantities
	Auxiliary Problem For Geometrical Transformation
	Summary

	Example Problems
	Elasto-Plastic Composite RVE With Random Stiff Inclusions
	Problem Description
	Results

	Two-Scale Compression With Porous Microstructure
	Problem Description
	Results


	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix. Plasticity model of the RVE
	References


