
International Journal for Numerical Methods in Engineering

RESEARCH ARTICLE OPEN ACCESS

Reduced-Order Modeling for Second-Order Computational
Homogenization With Applications to Geometrically
Parameterized Elastomeric Metamaterials
T. Guo1, 2 | V. G. Kouznetsova3 | M. G. D. Geers3 | K. Veroy1, 2 | O. Rokoš2, 3

1Centre for Analysis, Scientific Computing and Applications, Eindhoven University of Technology, Eindhoven, The Netherlands | 2Institute for Complex
Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands | 3Mechanics of Materials, Eindhoven University of Technology,
Eindhoven, The Netherlands

Correspondence: T. Guo (t.guo@tue.nl)

Received: 24 April 2024 | Revised: 30 August 2024 | Accepted: 16 September 2024

Funding: This result is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
Research and Innovation Programme (Grant Agreement No. 818473).

Keywords: empirical cubature method | geometrical transformation | hyperreduction | proper orthogonal decomposition | reduced-order
modeling | second-order computational homogenization

ABSTRACT
The structural properties of mechanical metamaterials are typically studied with two-scale methods based on computational
homogenization. Because such materials have a complex microstructure, enriched schemes such as second-order computational
homogenization are required to fully capture their nonlinear behavior, which arises from nonlocal interactions due to the buck-
ling or patterning of the microstructure. In the two-scale formulation, the effective behavior of the microstructure is captured with
a representative volume element (RVE), and a homogenized effective continuum is considered on the macroscale. Although an
effective continuum formulation is introduced, solving such two-scale models concurrently is still computationally demanding
due to the many repeated solutions for each RVE at the microscale level. In this work, we propose a reduced-order model for the
microscopic problem arising in second-order computational homogenization, using proper orthogonal decomposition and a novel
hyperreduction method that is specifically tailored for this problem and inspired by the empirical cubature method. Two numerical
examples are considered, in which the performance of the reduced-order model is carefully assessed by comparing its solutions
with direct numerical simulations (entirely resolving the underlying microstructure) and the full second-order computational
homogenization model. The reduced-order model is able to approximate the result of the full computational homogenization
well, provided that the training data is representative for the problem at hand. Any remaining errors, when compared with the
direct numerical simulation, can be attributed to the inherent approximation errors in the computational homogenization scheme.
Regarding run times for one thread, speed-ups on the order of 100 are achieved with the reduced-order model as compared to direct
numerical simulations.

1 | Introduction

With the recent advances in additive manufacturing, there has
been a growing interest in designing and modeling metamaterials
which exhibit emerging exotic properties that can be fine-tuned
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for specific applications. By a careful microstructural design,
properties such as negative Poisson’s ratio [1], negative compress-
ibility [2], or negative refractive index [3] can be achieved. They
can also act as filters that absorb certain bandwidths of frequen-
cies [4], or act as acoustic cloaks [5]. Additionally, such materials
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have been applied in impact mitigation [6] or biomedical applica-
tions [7, 8]. A broad overview on their engineering applications
can be found in [9].

Studying properties of mechanical metamaterials through direct
numerical simulations (DNS) is often challenging since com-
plex microstructural geometries need to be resolved, requiring
very fine meshes. In particular, in multi-query contexts such as
the design of materials, numerous simulations are required and
the computational costs become infeasible. To address this issue,
multiscale methods based on computational homogenization
(CH) [10, 11] are usually employed. These methods involve the
separate modeling, discretization, and coupling of a microstruc-
ture defined on a representative volume element (RVE) and an
effective homogenized macrostructure. The effective continuum
does not resolve the complex microstructure on the macroscale
but captures the underlying microscale physics. At every inte-
gration point of the macrostructure, the macroscopic kinematic
quantities are used to specify the microscopic problem on the
RVE which, after solution, returns effective quantities (e.g., stress
and stiffness) back to the macroscopic solver. If scale separa-
tion can be assumed, that is, the microstructural features are
much smaller than the size of the macrostructure, the effec-
tive behavior of the microstructure can be adequately predicted
using first-order CH [12, 13]. However, for metamaterials the
microstructure can be of comparable size with the macrostruc-
ture and nonlocal effects (due to, e.g., buckling; see, e.g., [14, 15])
may emerge at the microscale, both violating the scale separation
assumptions of the first-order scheme.

Enriched CH methods, such as second-order CH [16] or micro-
morphic CH [17], extend the first-order formulation by introduc-
ing additional field variables and equations. For micromorphic
CH, additional fields that describe the governing behavior of the
underlying microstructure are introduced at the macroscale and
communicated between both scales. To determine the evolution
of these quantities, additional equations need to be included and
a coupled system is solved at the macroscale. As an example, the
average strain of the inclusions inside a composite RVE was intro-
duced as an additional quantity in Biswas and Poh [18]. In Jänicke
et al. [19], micro-rotations were considered as additional field
variables for cellular materials. For buckling elastomeric meta-
materials, prior knowledge on the buckling modes was embedded
into the micromorphic framework presented in Rokoš et al. [15].
For second-order CH, a strain gradient formulation is considered
at the macroscale, that is, the gradient of the strain (or deforma-
tion gradient) is required, giving rise to a length-scale associated
with the size of the underlying RVE, thus making it possible to
capture size and nonlocal effects. To ensure a proper scale tran-
sition of the kinematical quantities, additional constraints were
derived in Kouznetsova, Geers, and Brekelmans [16]. However,
this model leads to artificial stress concentrations at the corners
of the RVE for which subsequent formulations attempted to cor-
rect [20–22]. In Luscher, McDowell, and Bronkhorst [20], addi-
tional constraints were derived from orthogonality conditions on
the different components of the displacement field on the RVE,
and in Wu et al. [21] and Yvonnet, Auffray, and Monchiet [22]
body forces were included to account for additional effects.

In spite of the simplified formulation in terms of an effective
nonlocal continuum, the multiscale problem based on CH is still

computationally expensive, as the microscopic problem needs
to be solved repeatedly. Compared to the DNS, the two-scale
model has much fewer degrees of freedom and elements on the
macroscale. However, the evaluation of the constitutive model,
that is, solving the microscopic problem, is much more expensive.
As a matter of fact, it might take longer to compute the multiscale
model as compared to the DNS for small to intermediate scale
ratios. To overcome this problem, a reduced-order model (ROM)
for the microscopic problem that is accurate and fast to evaluate
is necessary. For first-order CH, numerous methods have been
proposed in the literature. These methods can be split into two
main classes: (1) data-driven methods that learn a constitutive
model (i.e., stress–strain relation) from large datasets obtained
by solving the microscopic problem for many different inputs,
and (2) projection-based methods that accelerate the microscopic
problem by projecting it onto a reduced space. Notable methods
for the first class include, for example, the data-driven framework
introduced in Kirchdoerfer and Ortiz [23] or constitutive artificial
neural networks in Linka et al. [24], which were applied to learn
effective elastic material models and later extended for other
material models (see, e.g., [25–27]). Other authors generated
large datasets and utilized recurrent neural networks to learn
history-dependent plasticity material models in, for example, [28,
29]. Even though highly accurate and efficient ROMs can be
obtained with these methods, there are three concerns: (1) rather
large datasets are usually needed that ideally cover all possi-
ble inputs, (2) dealing with history-dependent behaviors such
as plasticity is often challenging, and (3) extrapolation is unre-
liable. For the second class, methods based on proper orthogo-
nal decomposition (POD) and hyperreduction have been quite
successful. Using POD, the solution space of the microscopic
problem is reduced to a fraction of the original problem; with
hyperreduction [30, 31], and more specifically, the empirical
cubature method (ECM) proposed by Hernández, Caicedo, and
Ferrer [32] and later refined in [33], the assembly of the global
stiffness matrix and internal force vector can be performed much
more efficiently. Since the microscopic problem is still being
solved (in a reduced form), smaller datasets are typically suffi-
cient for good results and dealing with history-dependent behav-
ior is not an issue. In Caicedo et al. [34] and Raschi et al. [35],
two-scale simulations involving highly nonlinear RVEs were suc-
cessfully accelerated. In our previous work [36], we constructed
an efficient ROM by combining POD and ECM with geomet-
rical transformations that can be applied for two-scale shape
optimization problems involving elasto-plastic RVEs under large
deformations.

While there is a wide range of works on accelerating the
first-order CH model, to the best of our knowledge there have
been no attempts towards the reduced-order modeling of any
enriched formulations. Inspired by the literature on first-order
CH, in this contribution we propose a ROM for second-order CH,
utilizing POD and a novel hyperreduction method that is inspired
by ECM [32]. The main reasons for opting for a projection-based
ROM over a data-driven one are two-fold: (1) estimation of
parameter bounds for strain gradients is generally difficult a pri-
ori, and (2) the number of input parameters is large, in 2D cor-
responding to four components of the deformation gradient and
another six of the gradient of the deformation gradient (nine
and eighteen in 3D). This parameter space does not yet account
for any other additional design variables, which would further
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increase the number of parameters. The main innovative contri-
butions of this manuscript are:

• design of a novel hyperreduction algorithm tailored to
second-order CH,

• development of a hyperreduced POD model for a family of
geometrically parameterized microstructures,

• derivation of effective quantities arising in reduced
second-order CH, and

• an empirical analysis of the hyperreduced model for geo-
metrically parameterized two-scale simulations under large
deformations and multiscale buckling.

After reviewing the theory on second-order CH and specify-
ing the employed formulation used in Section 2, the proposed
ROM, including the novel hyperreduction algorithm, is presented
in Section 3. To validate the ROM, numerical examples are dis-
cussed in Section 4 and obtained results are compared with ref-
erence solutions in terms of accuracy and efficiency. A summary
on the findings with final remarks is provided in Section 5.

Throughout the article, the following notation conventions are
used:

• scalars 𝑎,

• vectors 𝒂 = 𝑎𝑖𝒆𝑖 ,

• position vector 𝒙 = 𝑥𝑖𝒆𝑖 ,

• second-order tensors 𝑨 = 𝐴𝑖𝑗𝒆𝑖𝒆𝑗 ,

• third-order tensors  = 𝑖𝑗𝑘𝒆𝑖𝒆𝑗𝒆𝑘 ,

• fourth-order tensors 𝔄 = 𝔄𝑖𝑗𝑘𝑙𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 ,

• matrices A and column matrices a,

• 𝒂 ⋅ 𝒃 = 𝑎𝑖𝑏𝑖 ,

• 𝒂 ⊗ 𝒃 = 𝑎𝑖𝑏𝑗𝒆𝑖𝒆𝑗 ,

• 𝑨 ⋅ 𝒃 = 𝐴𝑖𝑗𝑏𝑗𝒆𝑖 ,

• 𝑨 ⋅ 𝑩 = 𝐴𝑖𝑘𝐵𝑘𝑗𝒆𝑖𝒆𝑗 ,

• 𝑨 ∶ 𝑩 = 𝐴𝑖𝑗𝐵𝑗𝑖 ,

• 𝑨⊗ 𝒃 = 𝐴𝑖𝑗𝑏𝑘𝒆𝑖𝒆𝑗𝒆𝑘 ,

• 𝒃 ⊗ 𝑨 = 𝑏𝑖𝐴𝑗𝑘𝒆𝑖𝒆𝑗𝒆𝑘 ,

• 𝑨⊗ 𝑩 = 𝐴𝑖𝑗𝐵𝑘𝑙𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 ,

• 𝒂 ⋅ = 𝑎𝑖𝑖𝑗𝑘𝒆𝑖𝒆𝑗 ,

•  ⋮  = 𝑖𝑗𝑘𝑘𝑗𝑖 ,

• 𝔄 ∶ 𝑩 = 𝔄𝑖𝑗𝑘𝑙𝐵𝑙𝑘𝒆𝑖𝒆𝑗 ,

• 𝑨 ∶ 𝔅 = 𝐴𝑙𝑘𝔅𝑘𝑙𝑖𝑗𝒆𝑖𝒆𝑗 ,

• transpose 𝑨𝑇 , 𝐴𝑇
𝑖𝑗
= 𝐴𝑗𝑖 , 

𝑇 , 𝑇
𝑖𝑗𝑘
= 𝑘𝑗𝑖 ,

• tr𝑨 = 𝐴𝑖𝑖 ,

• gradient operator with respect to 𝒙, 𝛁𝒙𝒂 =
𝜕𝑎𝑗

𝜕𝑥𝑖
𝒆𝑖𝒆𝑗 , 𝛁𝒙𝑨 =

𝜕𝐴𝑗𝑘

𝜕𝑥𝑖
𝒆𝑖𝒆𝑗𝒆𝑘 ,

• gradient operator with respect to second-order tensor 𝑩,

𝛁𝑩𝑨 =
𝜕𝐴𝑘𝑙
𝜕𝐵𝑖𝑗

𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙 , 𝛁𝑩 =
𝜕𝑘𝑙𝑚

𝜕𝐵𝑖𝑗
𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙𝒆𝑚,

• gradient operator with respect to third-order tensor ,

𝛁𝑨 =
𝜕𝐴𝑙𝑚
𝜕𝑖𝑗𝑘

𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙𝒆𝑚, 𝛁 =
𝜕𝑙𝑚𝑛

𝜕𝑖𝑗𝑘

𝒆𝑖𝒆𝑗𝒆𝑘𝒆𝑙𝒆𝑚𝒆𝑛,

• divergence operator with respect to 𝒙, 𝛁𝒙 ⋅ 𝑨 =
𝜕𝐴𝑖𝑗

𝜕𝑥𝑖
𝒆𝑗 , 𝛁𝒙 ⋅

 =
𝜕𝐴𝑖𝑗𝑘

𝜕𝑥𝑖
𝒆𝑗𝒆𝑘 ,

• linearization of functional Π around state 𝒂 in direction
Δ𝒂, 𝐷Π|𝒂 ⋅ (Δ𝒂) = 𝑑

𝑑𝜏
Π(𝒂 + 𝜏Δ𝒂)

||||𝜏=0
,

where the Einstein summation convention is assumed on
repeated indices 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛 and 𝒆𝑖 , 𝑖 = 1,… , 𝑑 denote the basis
vectors of a 𝑑-dimensional Cartesian coordinate frame. Over-
lines are used to distinguish macroscopic from microscopic
quantities.

2 | Second-Order Computational
Homogenization

The second-order computational homogenization (CH2) formu-
lation contains the second gradient of the displacement field,
thus introducing a length-scale associated with the length-scale
of the underlying unit cell, making it possible to capture
size and nonlocal effects [37, 38]. The formulation of the
micro- and macroscopic problem as well as their scale cou-
pling employed in this work is discussed in the subsections
below. A schematic sketch of the two-scale problem is depicted
in Figure 1.

2.1 | Macroscopic Problem

In CH2, the macroscopic problem is based on a strain gradient
formulation [37, 38] to model nonlocal effects of the microstruc-
ture. Consider a bodyΩ ⊂ ℝ𝑑 with outer boundaries 𝜕Ω, 𝑑 = 2, 3
the space dimension, and a position vector 𝒙 ∈ Ω. The governing
partial differential equation (PDE) has the form (with body forces
neglected for brevity) [16],

𝛁𝒙 ⋅ (𝑷(𝑭,, 𝝁)
𝑇 − (𝛁𝒙 ⋅(𝑭,, 𝝁))

𝑇) = 𝟎 (1)

where 𝑭 ∶= 𝑰 + (𝛁𝒙𝒖)
𝑇 is the macroscopic deformation gradi-

ent with 𝒖(𝒙) being the macroscopic displacement field and
𝑰 the second-order identity tensor,  ∶= 𝛁𝒙𝑭 is the gradi-
ent of the deformation gradient, that is, a third-order tensor
with symmetry 𝑖𝑗𝑘 = 𝑘𝑗𝑖 , and 𝝁 contains additional param-
eters; 𝑷 denotes the second-order first Piola–Kirchhoff (1PK)
stress tensor, and  is a third-order tensor often referred to
as the higher-order or double stress tensor [37, 38]. By mul-
tiplying Equation (1) with a test function 𝛿𝒖 and utilizing
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FIGURE 1 | Two-scale formulation in second-order computational homogenization. At every macroscopic point, the deformation gradient 𝑭 and
its gradient  are used to prescribe boundary conditions for the microscopic problem which, after solving, returns an effective stress 𝑷 and higher-order
stress 𝑸. The parameter 𝝁 describes the geometry of the RVE. More information on 𝝁 are provided in Section 2.2.

the divergence theorem, the following weak form can be
derived [39],

∫Ω
(
𝑷(𝑭,, 𝝁) ∶ 𝛿𝑭

𝑇
+(𝑭,, 𝝁) ⋮ 𝛿

)
𝑑𝒙

= ∫𝜕ΩN

(
𝛿𝒖 ⋅ (𝑷 − 𝛁𝒙 ⋅) ⋅ 𝒏 + 𝒏 ⋅ ∶ 𝛿𝑭

𝑇
)
𝑑𝒙

(2)

where 𝛿𝑭 ∶= (𝛁𝒙𝛿𝒖)
𝑇 and 𝛿 ∶= 𝛁𝒙𝛿𝑭 are introduced, 𝜕ΩN

denotes the boundaries with prescribed Neumann boundary con-
ditions, and 𝒏 is the outward unit normal vector. In addition,
there are Dirichlet boundaries 𝜕ΩD, with 𝜕ΩD ∩ 𝜕ΩN = ∅ and
𝜕ΩD ∪ 𝜕ΩN = 𝜕Ω, where values of the displacement𝒖 and its gra-
dient𝛁𝒙𝒖 are prescribed. In this work, we consider only Dirichlet
boundary conditions, so that the terms on the right hand side van-
ish and Equation (2) becomes

∫Ω
(
𝑷(𝑭,, 𝝁) ∶ 𝛿𝑭

𝑇
+(𝑭,, 𝝁) ⋮ 𝛿

)
𝑑𝒙

!
= 0 (3)

The macroscopic problem can then be stated as follows: find
𝒖 that fulfills Equation (3) for all test functions 𝛿𝒖. The rela-
tion between (𝑷,) and (𝑭,, 𝝁) is established by solving the
microscopic boundary value problem, which is defined on a RVE
and discussed in more detail in Section 2.2. In particular, we
assume that 𝝁 contains parameters that describe the geometry of
the RVE.

In order to solve the problem in Equation (3), the second gra-
dient of 𝒖 is required. To this end, Lesičar, Tonković, and
Sorić [40] employed 36 degrees of freedom (DOF) 𝐶1-triangular
elements. Wu et al. [21] utilized an enriched discontinuous
Galerkin method combined with a penalty method to enforce
𝐶1-continuity weakly. Other works reformulate the problem
in Equation (3) with a mixed formulation instead [16, 20, 41],
which results in a saddle point problem and is used also in
this work. The idea of the mixed formulation is to introduce an
independent deformation gradient field ̂

𝑭 which is coupled with
the deformation gradient computed from the displacement field

through Lagrange multipliers 𝑳. With ̂
𝑭, its gradient ̂ ∶= 𝛁𝒙

̂
𝑭,

and 𝑳, the problem in Equation (3) can be rewritten as

Π(𝒖,
̂
𝑭, 𝑳) ∶= ∫Ω

(
𝑷(𝑭,

̂
, 𝝁) ∶ 𝛿𝑭

𝑇
+(𝑭,

̂
, 𝝁)

⋮ 𝛿 ̂ + 𝛿(𝑳 ∶ ( ̂𝑭𝑇 − 𝑭
𝑇
))
)
𝑑𝒙

!
= 0

(4)

which should hold for all test functions 𝛿𝒖, 𝛿 ̂𝑭 and 𝛿𝑳. Inserting
𝛿𝑭 = (𝛁𝒙𝛿𝒖)

𝑇 , 𝛿 ̂ = 𝛁𝒙𝛿
̂
𝑭 and

𝛿(𝑳 ∶ (
̂
𝑭𝑇 − 𝑭

𝑇
)) = (

̂
𝑭𝑇 − 𝑭

𝑇
) ∶ 𝛿𝑳 + 𝑳 ∶

(
𝛿
̂
𝑭𝑇 − 𝛁𝒙𝛿𝒖

)
(5)

into Equation (4) yields

Π(𝒖,
̂
𝑭, 𝑳)

= ∫Ω
(
𝑷 ∶ 𝛁𝒙𝛿𝒖 + ⋮ 𝛁𝒙𝛿

̂
𝑭 + (

̂
𝑭𝑇 − 𝑭

𝑇
)

∶ 𝛿𝑳 + 𝑳 ∶
(
𝛿
̂
𝑭𝑇 − 𝛁𝒙𝛿𝒖

))
𝑑𝒙

= ∫Ω
(
(𝑷 − 𝑳) ∶ 𝛁𝒙𝛿𝒖 + 𝑳 ∶ 𝛿

̂
𝑭𝑇 +𝑑𝒙

⋮ 𝛁𝒙𝛿
̂
𝑭 + (

̂
𝑭𝑇 − 𝑭

𝑇
) ∶ 𝛿𝑳

)
𝑑𝒙

(6)

where arguments of 𝑷 and  have been omitted for brevity. Lin-
earization of Equation (6), required by the macroscopic iterative
Newton solver, around a state (𝒖, ̂𝑭, 𝑳) in directions (Δ𝒖, 𝟎, 𝟎),
(𝟎, Δ

̂
𝑭, 𝟎) and (𝟎, 𝟎, Δ𝑳), yields

𝐷Π|
𝒖,
̂
𝑭,𝑳

⋅ (Δ𝒖, 𝟎, 𝟎) = ∫Ω
(
𝛁𝒙Δ𝒖 ∶ 𝛁𝑭𝑷 ∶ 𝛁𝒙𝛿𝒖 + 𝛁𝒙Δ𝒖

∶ 𝛁𝑭 ⋮ 𝛁𝒙𝛿
̂
𝑭 − 𝛁𝒙Δ𝒖 ∶ 𝛿𝑳

)
𝑑𝒙

(7)
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𝐷Π|
𝒖,
̂
𝑭,𝑳

⋅ (𝟎, Δ ̂𝑭, 𝟎) = ∫Ω
(
𝛁𝒙Δ

̂
𝑭 ⋮ 𝛁̂


𝑷 ∶ 𝛁𝒙𝛿𝒖 + 𝛁𝒙Δ

̂
𝑭

⋮ 𝛁̂

 ⋮ 𝛁𝒙𝛿

̂
𝑭 + Δ

̂
𝑭𝑇 ∶ 𝛿𝑳

)
𝑑𝒙

(8)

𝐷Π|
𝒖,
̂
𝑭,𝑳

⋅ (𝟎, 𝟎, Δ𝑳) = ∫Ω
(
−Δ𝑳 ∶ 𝛁𝒙𝛿𝒖 + Δ𝑳 ∶ 𝛿

̂
𝑭𝑇
)
𝑑𝒙

(9)

where 𝛁𝑭𝑷, 𝛁𝑭, 𝛁̂

𝑷, and 𝛁̂


 are the macroscopic tangents

evaluated at (𝑭(𝒖), ̂( ̂𝑭), 𝝁). Given a suitable discretization for
𝒖, ̂𝑭 and 𝑳, the system of Equations (6–9) can be solved with
the finite element method, when a constitutive relation between
(𝑷,) and (𝑭, ̂, 𝝁) is established. Different combinations of dis-
placement, deformation gradient and Lagrange multiplier shape
functions were considered and tested in Kouznetsova, Geers,
and Brekelmans [16]. For the numerical examples in this work,
quadrilateral elements with eight displacement nodes, four defor-
mation gradient nodes and one Lagrange multiplier node per ele-
ment are chosen.

2.2 | Parameterized Microscopic Problem

To evaluate 𝑷 and  and their derivatives in Equations (6–9),
the microscopic problem needs to be solved at every macroscopic
integration point. Here, we follow the formulation as presented in
Kouznetsova, Geers, and Brekelmans [42], where the microscopic
problem is modeled as a standard Cauchy continuum. For brevity,
a fixed macroscopic material point is assumed, and the depen-
dence on the macroscopic coordinates is omitted in the definition
of the microscopic problem provided below.

Consider a family of domainsΩ𝝁 ⊂ ℝ𝑑, parameterized by param-
eters 𝝁 ∈ ℙ with parameter space ℙ and spanned by position
vectors 𝒙𝝁 ∈ Ω𝝁, see Figure 2. For all 𝝁, the outer boundaries
and topology of Ω𝝁 are assumed to remain fixed. As a conse-
quence, the volume ||Ω𝝁|| remains constant for all 𝝁. Addition-
ally, it is assumed that there exists a parent domain Ωp ∶= Ω𝝁p

with 𝝁p ∈ ℙ, which can be transformed into anyΩ𝝁 with a trans-
formation map𝚽𝝁 ∶ Ω

p → Ω𝝁, 𝒙p ↦ 𝒙𝝁, transformation gradient
𝑭𝝁 ∶= (𝛁𝒙p𝚽𝝁)

𝑇 and 𝑑𝒙𝝁 = |||det𝑭𝝁
|||𝑑𝒙p. Note that the transfor-

mation map 𝚽𝝁 must be one-to-one and thus the absolute value
in |||det𝑭𝝁

||| is not strictly necessary, but kept for completeness.
For a fixed domain, that is, Ωp = Ω𝝁, the transformations 𝚽𝝁

are identity maps, with 𝑭𝝁 = 𝑰 and |||det𝑭𝝁
||| = 1. Throughout this

manuscript, the superscript p will be used to denote quantities
related to the parent domain.

To obtain such transformation maps 𝚽𝝁, we solve the auxiliary
problem as proposed in [43]. The key idea of the method is to pose
an auxiliary linear elasticity problem on the parent domain that
can be solved for the transformation displacement 𝒅, which can
then be utilized to compute the transformation𝚽𝝁 with𝚽𝝁(𝒙

p) =

𝑰 + 𝒅(𝒙p). The displacement 𝒅 is fixed on the outer boundaries
with zero Dirichlet boundary conditions and prescribed on parts
of the domain that are known from the parameterization (as an
example, the circular interface ofΩp in Figure 2 is deformed into
the elliptical interfaces in Ω𝝁1 and Ω𝝁2 ). Subsequently, the aux-
iliary problem can be solved to find the entire field 𝒅(𝒙p). To
fully specify the auxiliary problem, a Young’s modulus 𝐸aux and
Poisson’s ratio 𝜉aux need to be selected, see [43]. For all RVEs con-
sidered in this work, the auxiliary problem is solved with 𝐸aux =

1 MPa and 𝜉aux = 0.25. More details on the auxiliary problem can
be found in [43].

The microscopic displacement field𝒖(𝒙𝝁) is assumed to consist of
a mean field 𝒖(𝒙𝝁) and a fluctuation field𝒘(𝒙𝝁), that is, 𝒖(𝒙𝝁) =
𝒖(𝒙𝝁) + 𝒘(𝒙𝝁). The mean field 𝒖 is fully prescribed through the
macroscopic quantities (𝑭, ̂) with

𝒖(𝒙𝝁) ∶= (𝑭 − 𝑰) ⋅ 𝒙𝝁 +
1
2
(𝒙𝝁 ⋅ ̂) ⋅ 𝒙𝝁 (10)

Subsequently, the microscopic deformation gradient can be
defined as

𝑭 ∶= 𝑰 + (𝛁𝒙𝝁𝒖)
𝑇 = 𝑭 + 𝒙𝝁 ⋅ ̂ + (𝛁𝒙𝝁𝒘)

𝑇 (11)

The governing microscopic PDE is given by,

𝛁𝒙𝝁 ⋅ 𝑷
𝑇(𝑭) = 𝟎 (12)

which can be written into its weak form by multiplying with a
test function 𝛿𝒘 and applying the divergence theorem,

Π(𝒘) = ∫Ω𝝁

𝛁𝒙𝝁𝛿𝒘 ∶ 𝑷
(
𝑭 + 𝒙𝝁 ⋅ ̂ + (𝛁𝒙𝝁𝒘)

𝑇
)
𝑑𝒙𝝁

!
= 0

(13)

where 𝑷 is the microscopic second-order 1PK stress tensor, and
the macroscopic quantities (𝑭, ̂) act as external forcing terms.
For now, no constitutive model at the microscale level is speci-
fied, but it is assumed that 𝑷 is a nonlinear function of the defor-
mation gradient 𝑭. The microscopic problem can thus be stated

FIGURE 2 | Family of RVE domains Ω𝝁 parameterized through parameters 𝝁. A parent domain Ωp can be defined which can be transformed
through transformations 𝚽𝝁 into any of the RVE domains Ω𝝁.
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as follows: given (𝑭,
̂
, 𝝁), find 𝒘 that fulfills Equation (13) for

all 𝛿𝒘. To remove the dependence of the integral on parameters
𝝁, Equation (13) can be transformed to the parent domain with
the transformation map 𝚽𝝁, that is,

Π(𝒘p) = ∫Ωp

(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝛿𝒘p)
)
∶ 𝑷p(𝑭p)

|||det𝑭𝝁
|||𝑑𝒙p !

= 0

(14)

where 𝒘p(𝒙p) ∶= (𝒘∘𝚽𝝁)(𝒙
p) = 𝒘(𝒙𝝁), 𝛿𝒘p(𝒙p) ∶= 𝛿𝒘(𝒙𝝁),

𝑷p(𝒙p) ∶= 𝑷(𝒙𝝁), and

𝑭p = 𝑭 + 𝚽𝝁(𝒙
p) ⋅ ̂ + (𝛁𝒙p𝒘p)

𝑇 ⋅ 𝑭−1
𝝁

(15)

Hereafter, we write 𝒙𝝁(𝒙p) instead of 𝚽𝝁(𝒙
p) for brevity. To find

the 𝒘p that fulfills Equation (14) for all 𝛿𝒘p, the linearization
of Equation (14) around a state 𝒘p in direction Δ𝒘p is required,

𝐷Π|𝒘p ⋅ (Δ𝒘p) = ∫Ωp

(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙pΔ𝒘p)
)

∶ 𝔄p(𝑭p) ∶
(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝛿𝒘p)
)|||det𝑭𝝁

|||𝑑𝒙p

(16)

where𝔄p ∶= 𝛁𝑭𝑷
p is the fourth-order stiffness tensor on the par-

ent domain.

To ensure a proper scale transition of the kinematic quan-
tities, different authors derived and proposed additional con-
straints on the fluctuation field 𝒘p. In Kouznetsova, Geers, and
Brekelmans [16], periodic boundary conditions (PBC) for 𝒘p are
assumed and the following constraints are derived for a rectan-
gular RVE

∫𝜕Ωp
top

𝒘p𝑑𝒙p = 𝟎 (17)

∫𝜕Ωp
right

𝒘p𝑑𝒙p = 𝟎 (18)

where 𝜕Ωp
top and 𝜕Ωp

right denote the top and right edge of the RVE
Ωp, see Figure 2. Due to PBC, the same conditions hold for the
bottom and left edge. In addition, the fluctuation field is set to
zero on all four corners of the RVE, that is, 𝒘p = 𝟎. Since it is
assumed thatΩ𝝁 has fixed outer boundaries for all 𝝁, constraints
in Equations (17) and (18) are independent of 𝝁. In subsequent
works, other authors developed slightly different formulations
(see, e.g., [20–22, 41, 44]). In [41], the authors compared differ-
ent formulations and pointed out that fixing the corners in the
formulation in Kouznetsova, Geers, and Brekelmans [16] leads to
stress concentrations and artificial effects at the corners. Instead
of fixing the corners, other formulations introduce an additional
equation that constrains the rigid body motion with

∫Ω𝝁

𝒘𝑑𝒙𝝁 = ∫Ωp
𝒘p|||det𝑭𝝁

|||𝑑𝒙p = 𝟎 (19)

The complete microscopic model employed in this work consists
of Equations (14–19) together with PBC for 𝒘p. Lagrange mul-
tipliers are used to enforce the constraints in Equations (17–19)
and PBC, resulting in a saddle point problem.

To solve the microscopic problem, the fluctuation displace-
ment is typically discretized with finite elements (FE). We thus
approximate

𝒘p(𝒙p) ≈ N(𝒙p)w (20)

where N(𝒙p) ∈ ℝ𝑑× denotes the FE shape functions, w ∈ ℝ
the coefficients of the discretized displacement fluctuation field,
and  the total number of DOFs. Note that lowercase non-italic
symbols, for example, w, are used for column matrices, while
uppercase non-italic symbols, for example, N, are used for matri-
ces. Subsequently, the weak form in Equation (14), together with
the constraints, can be written as

f(w) + C𝑇m = 𝟎

Cw = 𝟎
(21)

where f ∈ ℝ is the global internal force column matrix, the
constraint matrix C ∈ ℝ𝑁𝑐× is derived from the constraints
in Equations (17–19) and PBC, with 𝑁𝑐 the number of con-
straint equations, and m ∈ ℝ𝑁𝑐 are the corresponding Lagrange
multipliers. Note that the constraint matrix C depends on the
parameter 𝝁 because of Equation (19). This dependency has been
dropped for brevity. Using Newton’s method, the nonlinear sys-
tem of equations in Equation (21) can be solved for w and m,[

K(w𝑘) C𝑇

C 𝟎

][
Δw
m

]
=

[
− f(w𝑘)

𝟎

]
w𝑘+1 = w𝑘 + Δw

(22)

where K ∈ ℝ× is the global stiffness matrix computed
from Equation (16), 𝑘 ≥ 0 is the Newton iteration number, and
w0 = 𝟎 is the starting value. Equation (22) is repeated until‖‖f(w𝑘) + C𝑇m‖‖2 ≤ 𝜀newton with 𝜀newton a user-defined tolerance.
For more information on the FE method and discretization of
weak forms, we refer to [45].

2.3 | Effective Quantities

After the microscopic problem has been solved and a solution𝒘∗p

obtained, the effective stress 𝑷, higher-order stress  and their
corresponding derivatives with respect to 𝑭 and ̂

 must be com-
puted. For conciseness, the following microscopic quantities are
introduced:

𝑭∗p ∶= 𝑭 + 𝒙𝝁 ⋅ ̂ + (𝛁𝒙p𝒘∗p)
𝑇 ⋅ 𝑭−1

𝝁
(23)

𝑷∗p ∶= 𝑷p(𝑭∗p) (24)

𝔄∗p ∶= 𝔄p(𝑭∗p) (25)

which correspond to the microstructural deformation gradient,
1PK stress, and related stiffness tensors all evaluated at the solu-
tion 𝒘∗p on the parent domain, as indicated by the asterisk *.
Expressions for the effective stress 𝑷 and higher-order stress 

were derived in [42] which, after transformation to the parent
domain, yield

𝑷 ∶=
1||Ωp|| ∫Ωp

𝑷∗p|||det𝑭𝝁
|||𝑑𝒙p (26)

 ∶=
1||Ωp|| ∫Ωp

1
2
(
𝑷∗p𝑇 ⊗ 𝒙𝝁 + 𝒙𝝁 ⊗ 𝑷∗p)|||det𝑭𝝁

|||𝑑𝒙p (27)
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The effective stiffness components, derived by differentiating the
above stress and higher-order stress quantities then yield (in
index notation)

𝜕𝑃𝑖𝑗

𝜕𝐹𝑘𝑙
=

1||Ωp|| ∫Ωp

𝜕𝑃
∗p
𝑖𝑗

𝜕𝐹𝑘𝑙

|||det𝑭𝝁
|||𝑑𝒙p (28)

𝜕𝑃𝑖𝑗

𝜕
̂𝑚𝑛𝑜

=
1||Ωp|| ∫Ωp

𝜕𝑃
∗p
𝑖𝑗

𝜕
̂𝑚𝑛𝑜

|||det𝑭𝝁
|||𝑑𝒙p (29)

𝜕𝑖𝑗𝑘

𝜕𝐹𝑚𝑛
=

1||Ωp|| ∫Ωp

1
2

(
𝜕𝑃

∗p
𝑗𝑖

𝜕𝐹𝑚𝑛
𝑥
𝝁

𝑘
+ 𝑥

𝝁

𝑖

𝜕𝑃
∗p
𝑗𝑘

𝜕𝐹𝑚𝑛

)|||det𝑭𝝁
|||𝑑𝒙p

(30)

𝜕𝑖𝑗𝑘

𝜕
̂𝑚𝑛𝑜

=
1||Ωp|| ∫Ωp

1
2

⎛⎜⎜⎝
𝜕𝑃

∗p
𝑗𝑖

𝜕
̂𝑚𝑛𝑜

𝑥
𝝁

𝑘
+ 𝑥

𝝁

𝑖

𝜕𝑃
∗p
𝑗𝑘

𝜕
̂𝑚𝑛𝑜

⎞⎟⎟⎠|||det𝑭𝝁
|||𝑑𝒙p

(31)
In the above,

𝜕𝑃
∗p
𝑖𝑗

𝜕𝐹𝑘𝑙
= 𝔄∗p

𝑖𝑗𝑚𝑛

(
𝛿𝑚𝑘𝛿𝑛𝑙 +

𝜕

𝜕𝐹𝑘𝑙

(
𝜕𝑤

∗p
𝑚

𝜕𝑥
p
𝑟

)
𝐹−1
𝝁,𝑟𝑛

)
(32)

an

𝜕𝑃
∗p
𝑖𝑗

𝜕
̂𝑚𝑛𝑜

= 𝔄∗p
𝑖𝑗𝑘𝑙

⎛⎜⎜⎜⎝
𝜕
(
𝑥
𝝁
𝑟
̂𝑟𝑘𝑙
)

𝜕
̂𝑚𝑛𝑜

+
𝜕

𝜕
̂𝑚𝑛𝑜

(
𝜕𝑤

∗p
𝑘

𝜕𝑥
p
𝑠

)
𝐹−1
𝝁,𝑠𝑙

⎞⎟⎟⎟⎠
= 𝔄∗p

𝑖𝑗𝑘𝑙

⎛⎜⎜⎝𝑥𝝁𝑟 𝛿𝑟𝑚𝛿𝑘𝑛𝛿𝑙𝑜 + 𝜕

𝜕
̂𝑚𝑛𝑜

(
𝜕𝑤

∗p
𝑘

𝜕𝑥
p
𝑠

)
𝐹−1
𝝁,𝑠𝑙

⎞⎟⎟⎠
= 𝔄∗p

𝑖𝑗𝑘𝑙

⎛⎜⎜⎝𝑥𝝁𝑚𝛿𝑘𝑛𝛿𝑙𝑜 + 𝜕

𝜕
̂𝑚𝑛𝑜

(
𝜕𝑤

∗p
𝑘

𝜕𝑥
p
𝑠

)
𝐹−1
𝝁,𝑠𝑙

⎞⎟⎟⎠

(33)

To determine 𝜕

𝜕𝐹𝑘𝑙

(
𝜕𝑤

∗p
𝑚

𝜕𝑥
p
𝑟

)
and 𝜕

𝜕
̂𝑚𝑛𝑜

(
𝜕𝑤

∗p
𝑘

𝜕𝑥
p
𝑠

)
, Equation (14)

is differentiated with respect to 𝑭 and ̂
 to derive linear tangent

problems that can be solved to find the corresponding sensitivi-
ties. As an example, for one particular component 𝐹𝑘𝑙 (where the
indices 𝑘 and 𝑙 are assumed to be temporarily fixed), the differen-
tiation yields

𝜕Π(𝒘∗p)

𝜕𝐹𝑘𝑙
=∫Ωp

(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝛿𝒘p)
)
∶
𝜕𝑷∗p

𝜕𝐹𝑘𝑙

|||det𝑭𝝁
|||𝑑𝒙p = 0

(34)
which can be rearranged with Equation (32) as

∫Ωp

(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝒒𝑘𝑙)
)
∶ 𝔄∗p ∶

(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝛿𝒘p)
)|||det𝑭𝝁

|||𝑑𝒙p

= −𝑬𝑇
𝑘𝑙
∶

(
∫Ωp

𝔄∗p ∶
(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝛿𝒘p)
)|||det𝑭𝝁

|||𝑑𝒙p
)

(35)
where a new auxiliary vector field 𝒒𝑘𝑙 ∶=

𝜕𝒘∗p

𝜕𝐹𝑘𝑙
is defined, reflect-

ing the sensitivity of the microfluctuation field with respect to
the change of the macroscopic deformation gradient, and 𝑬𝑘𝑙 ∈
ℝ𝑑×𝑑 is a second-order tensor with all entries zero except for

the 𝑘𝑙th entry which is 1. The linear problem of Equation (35)
is solved for all combinations 𝑘, 𝑙 = 1,… , 𝑑 to obtain 𝒒𝑘𝑙 for
each component of 𝑭. The same procedure is followed for ̂

.
With an auxiliary vector field 𝒒𝑚𝑛𝑜 ∶=

𝜕𝒘∗p

𝜕
̂𝑚𝑛𝑜

, the differentiation

of Equation (14) for one particular component ̂𝑚𝑛𝑜 (where the
indices 𝑚, 𝑛 and 𝑜 are assumed to be temporarily fixed) yields,
together with Equation (33),

∫Ωp

(
𝑭−𝑇𝝁 ⋅ (𝛁𝒙p𝒒𝑚𝑛𝑜)

)
∶ 𝔄∗p ∶

(
𝑭−𝑇𝝁 ⋅

(
𝛁𝒙p𝛿𝒘p))|||det𝑭𝝁

|||𝑑𝒙p

= −𝑇𝑚𝑛𝑜 ⋮
(
∫Ωp

𝒙𝝁 ⊗𝔄∗p ∶
(
𝑭−𝑇𝝁 ⋅

(
𝛁𝒙p𝛿𝒘p))|||det𝑭𝝁

|||𝑑𝒙p
)

(36)

where 𝑚𝑛𝑜 ∈ ℝ𝑑×𝑑×𝑑 is a third-order tensor with all entries
zero except for the 𝑚𝑛𝑜th entry which is 1. The linear problem
of Equation (36) is then solved for all combinations 𝑚, 𝑛, 𝑜 =
1,… , 𝑑 to obtain 𝒒𝑚𝑛𝑜 for each component of ̂.

3 | Reduced-Order Modeling

Since the microscopic problem is solved at every macroscopic
integration point, its solution must be efficient. Due to the often
complicated RVE geometries, a fine discretization (using, e.g.,
finite elements) is required, resulting in a large number of DOFs
and integration points, which entail a costly solution. Further-
more, computing the effective quantities for a fine RVE mesh
presents another computationally expensive operation. To con-
struct a ROM for a more efficient solution, we employ two
reduction techniques: (1) we utilize POD to reduce the number
of DOFs in Section 3.1; and (2) to establish a more efficient inte-
gration scheme, we propose in Section 3.2 a novel hyperreduction
algorithm that uses ideas of the ECM [32], which is specifically
suited for the second-order CH formulation.

3.1 | Proper Orthogonal Decomposition

To reduce the number of DOFs, the fluctuation displacement field
𝒘p is approximated with a reduced basis [46, 47], that is,

𝒘p ≈

𝑁∑
𝑛=1
𝑎𝑛𝒗𝑛 (37)

where 𝑁 is typically much smaller than  , that is, 𝑁 ≪ . The
global basis functions, {𝒗𝑛}𝑁𝑛=1, are obtained by applying POD to
a set of pre-computed snapshots of 𝒘p for different parameter
values (𝑭, ̂, 𝝁). Since each of the basis functions is computed
from a linear combination of pre-computed periodic solutions
that fulfill the constraints in Equations (17–19), every basis func-
tion is periodic and also fulfills Equations (17) and (18). This
implies that any solution𝒘p that is represented by Equation (37)
always fulfills these conditions. However, the basis functions will
only fulfill the constraint in Equation (19) if a fixed geometry is
assumed for the RVE, that is, 𝝁 is constant. For varying geome-
tries, the constraint is violated due to the influence of |||det𝑭𝝁

|||.
Nevertheless, in our numerical examples, tests with and without
enforcing Equation (19) through Lagrange multipliers were run
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and only insignificant differences of the solutions were observed.
For that reason, we do not enforce Equation (19) for the ROM.
This has the added advantage that no constraints have to be con-
sidered for the ROM and, thus, more efficient solvers for the
resulting system of linear equations can be utilized.

Remark. For the full problem, Equation (19) must be enforced
to remove rigid body modes and ensure a unique solution. How-
ever, for the ROM, each basis function is a linear combination of
snapshots that fulfill Equation (19) in their respective domains.
Such basis functions should usually not span a solution space that
contains a rigid body mode of the microscopic problem for any
new domain. If numerical issues are encountered during the solu-
tion without the constraint, one should enforce the constraint.

By inserting Equation (37) into Equations (14) and (16) and
assuming a Galerkin projection, the components of the internal
force f ∈ ℝ𝑁 and global stiffness matrix K ∈ ℝ𝑁×𝑁 can be com-
puted:

𝑓𝑖(a) ∶= ∫Ωp

(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝒗𝑖)
)
∶ 𝑷p(𝑭p)

|||det𝑭𝝁
|||𝑑𝒙p (38)

𝐾𝑖𝑗(a) ∶= ∫Ωp

(
𝑭−𝑇
𝝁

⋅
(
𝛁𝒙p𝒗𝑗

))
∶ 𝔄p(𝑭p) ∶

(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝒗𝑖)
)|||det𝑭𝝁

|||𝑑𝒙p
(39)

for all 𝑖, 𝑗 = 1,… ,𝑁, and

𝑭p(a) = 𝑭 + 𝒙𝝁 ⋅ ̂ +

(
𝑁∑
𝑛=1
𝑎𝑛(𝛁𝒙p𝒗𝑛)

𝑇

)
⋅ 𝑭−1

𝝁
(40)

The column matrix a = [𝑎1,… , 𝑎𝑁]
𝑇 contains the unknown coef-

ficients to be solved for.

3.2 | Hyperreduction

While the reduced system of Equations (38) and (39) only has
𝑁 DOFs, computing the integrals in Equations (38) and (39) (as
well as Equations (26–33), (35) and (36) for the effective quanti-
ties) requires integration over the whole full finite element mesh
(typically with many Gauss quadrature points). To accelerate this
computation, a more efficient integration scheme (i.e., fewer inte-
gration points and corresponding weights) is sought that closely
approximates the numerical integration with Gaussian quadra-
ture of the following four quantities:

• Internal force f = [𝑓1,… , 𝑓𝑁]
𝑇 in Equation (38):

𝑓𝑖 = ∫Ωp

(
𝑭−𝑇
𝝁

⋅ (𝛁𝒙p𝒗𝑖)
)
∶ 𝑷p|||det𝑭𝝁

|||𝑑𝒙p

= ∫Ωp
𝛁𝒙p𝒗𝑖 ∶ 𝒀

p𝑑𝒙p
(41)

for all 𝑖 = 1,… ,𝑁 and where the weighted stress 𝒀p ∶= 𝑷p ⋅
𝑭−𝑇
𝝁

|||det𝑭𝝁
||| is defined.

• Effective stress 𝑷 in Equation (26):

𝑷 =
1||Ωp|| ∫Ωp

𝑷p|||det𝑭𝝁
|||𝑑𝒙p

=
1||Ωp|| ∫Ωp

𝒀p ⋅ 𝑭𝑇
𝝁
𝑑𝒙p

=
1||Ωp|| ∫Ωp

𝒀p𝑑𝒙p

(42)

where, in the last line the invariance of the integral with
respect to 𝑭𝑇

𝝁
was used, which was proven in [43, Appendix

A]. This implies that the accurate integration of the effec-
tive stress is equivalent to the accurate integration of the
weighted stress 𝒀p.

• Effective higher-order stress  in Equation (27):

 =
1||Ωp|| ∫Ωp

1
2
(
𝑷p𝑇 ⊗ 𝒙𝝁 + 𝒙𝝁 ⊗ 𝑷p)|||det𝑭𝝁

|||𝑑𝒙p

=
1||Ωp|| ∫Ωp


p𝑑𝒙p

(43)
where the weighted higher-order stress 

p ∶=
1
2
(
𝑷p𝑇 ⊗ 𝒙𝝁 + 𝒙𝝁 ⊗ 𝑷p)|||det𝑭𝝁

||| is defined.

• Volume:
𝑉 ∶= ||Ωp|| = ∫Ωp

𝑑𝒙p (44)

Even though the integration of the volume does not necessarily
have to be accurate, it helps to stabilize the algorithm used to find
the new integration points. In particular, it leads to fewer weights
that are equal to 0 during the solution of the nonnegative least
squares problem introduced later in Equation (56).

3.2.1 | Algorithm

To find an efficient integration scheme, we use concepts from the
ECM, which was previously applied to identify integration points
and weights for an efficient integration of the internal force, as
proposed by Hernández, Caicedo, and Ferrer [32] and recently
extended to varying geometries in Guo, Rokoš, and Veroy [36]. In
the first step, similarly to the fluctuation field 𝒘p, snapshots of
the weighted stress 𝒀p and weighted higher-order stress p are
collected for different parameter values (𝑭, ̂, 𝝁). Utilizing POD,
two sets of basis functions for 𝒀p and 

p, {𝑩𝑚}𝑀𝑚=1 and {𝑙}
𝐿
𝑙=1,

are found, with which 𝒀p and 
p can be approximated, that is,

𝒀p ≈

𝑀∑
𝑚=1

𝛼𝑚𝑩𝑚 (45)


p ≈

𝐿∑
𝑙=1
𝛽𝑙𝑙 (46)

Inserting Equations (45) and (46) into Equations (41–43) yields

𝑓𝑖 ≈

𝑀∑
𝑚=1

𝛼𝑚 ∫Ωp
𝛁𝒙p𝒗𝑖 ∶ 𝑩𝑚𝑑𝒙

p, ∀𝑖 = 1,… ,𝑁 (47)
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𝑷 ≈

𝑀∑
𝑚=1

𝛼𝑚
1||Ωp|| ∫Ωp

𝑩𝑚𝑑𝒙
p (48)

 ≈

𝐿∑
𝑙=1
𝛽𝑙

1||Ωp|| ∫Ωp
𝑙𝑑𝒙

p (49)

Since Equations (47–49) should be accurately integrated for
any values of 𝛼𝑚 and 𝛽𝑙 , all the occurring integrals in the sums
should be approximated accurately. Together with the volume
equation in Equation (44), integration points and weights are
sought that approximate these 𝑁𝑀 + 𝑑2𝑀 + 𝑑3𝐿 + 1 integrals
accurately. The factors 𝑑2 and 𝑑3 arise due to the number of com-
ponents of 𝑷 and .

Consider for now the full set of Gaussian integration points
{𝒙̂𝑞, ℎ̂𝑞}

𝑄
𝑞=1 corresponding to the fully resolved discretization,

where 𝑄 is the total number of Gauss integration points, 𝒙̂𝑞 their
positions and ℎ̂𝑞 their weights. By defining

𝟏 ∶=
[
1,… , 1

]𝑇
∈ ℝ𝑄 (50)

and the flattened basis functions (in 2D, i.e., 𝑑 = 2),

𝑩
𝑚
∶=
[
𝐵𝑚,11, 𝐵𝑚,12, 𝐵𝑚,21, 𝐵𝑚,22

]𝑇
∈ ℝ𝑑2

, ∀𝑚 = 1,… ,𝑀

(51)


𝑙
∶=
[
𝑙,111,𝑙,112,𝑙,121,𝑙,122,𝑙,211,𝑙,212,𝑙,221,𝑙,222

]𝑇
∈ ℝ𝑑3

, ∀𝑙 = 1,… , 𝐿
(52)

the numerical approximation of the 𝑁𝑀 + 𝑑2𝑀 + 𝑑3𝐿 + 1 inte-
grals with the full Gauss quadrature can be written in algebraic
form ⎡⎢⎢⎢⎢⎢⎣

A1

A2

A3

𝟏𝑇

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟
=∶A

⎡⎢⎢⎢⎣
ℎ̂1

⋮

ℎ̂𝑄

⎤⎥⎥⎥⎦
⏟⏟⏟
=∶ĥ

=

⎡⎢⎢⎢⎢⎢⎣

b1

b2

b3

𝑉

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟
=∶b

(53)

where

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝛁𝒙p𝒗1 ∶ 𝑩1)
||𝒙̂1

… (𝛁𝒙p𝒗1 ∶ 𝑩1)
||𝒙̂𝑄

⋮ ⋮

(𝛁𝒙p𝒗1 ∶ 𝑩𝑀)
||𝒙̂1

… (𝛁𝒙p𝒗1 ∶ 𝑩𝑀)
||𝒙̂𝑄

⋮ ⋮

(𝛁𝒙p𝒗𝑁 ∶ 𝑩1)
||𝒙̂1

… (𝛁𝒙p𝒗𝑁 ∶ 𝑩1)
||𝒙̂𝑄

⋮ ⋮

(𝛁𝒙p𝒗𝑁 ∶ 𝑩𝑀)
||𝒙̂1

… (𝛁𝒙p𝒗𝑁 ∶ 𝑩𝑀)
||𝒙̂𝑄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ ℝ𝑁𝑀×𝑄

A2 =

⎡⎢⎢⎢⎣
𝑩1(𝒙̂1) … 𝑩1(𝒙̂𝑄)

⋮ ⋮

𝑩
𝑀
(𝒙̂1) … 𝑩

𝑀
(𝒙̂𝑄)

⎤⎥⎥⎥⎦ ∈ ℝ𝑑2𝑀×𝑄

A3 =

⎡⎢⎢⎢⎣
1(𝒙̂1) … 1(𝒙̂𝑄)

⋮ ⋮


𝐿
(𝒙̂1) … 

𝐿
(𝒙̂𝑄)

⎤⎥⎥⎥⎦ ∈ ℝ𝑑3𝐿×𝑄

and

b1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫Ωp
𝛁𝒙p𝒗1 ∶ 𝑩1𝑑𝒙

p

⋮

∫Ωp
𝛁𝒙p𝒗1 ∶ 𝑩𝑀𝑑𝒙

p

⋮

∫Ωp
𝛁𝒙p𝒗𝑁 ∶ 𝑩1𝑑𝒙

p

⋮

∫Ωp
𝛁𝒙p𝒗𝑁 ∶ 𝑩𝑀𝑑𝒙

p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ ℝ𝑁𝑀

b2 =

⎡⎢⎢⎢⎢⎢⎣
∫Ωp

𝑩1𝑑𝒙
p

⋮

∫Ωp
𝑩
𝑀
𝑑𝒙p

⎤⎥⎥⎥⎥⎥⎦
∈ ℝ𝑑2𝑀, b3 =

⎡⎢⎢⎢⎢⎢⎣
∫Ωp

1𝑑𝒙
p

⋮

∫Ωp

𝐿
𝑑𝒙p

⎤⎥⎥⎥⎥⎥⎦
∈ ℝ𝑑3𝐿

The system in Equation (53) can be equivalently rewritten as

⎡⎢⎢⎢⎢⎢⎣

Â1

Â2

Â3

𝟏𝑇

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟
=∶Â

ĥ =

⎡⎢⎢⎢⎢⎢⎣

𝟎

𝟎

𝟎

𝑉

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟
=∶b̂

(54)

with
Â𝑖 = A𝑖 −

1
𝑉

b𝑖 ⊗ 𝟏, 𝑖 = 1, 2, 3 (55)

which is convenient for the definition of residuals of the
algorithm discussed below.

The goal now is to select a subset of integration points {𝒙𝑞}
𝑄
𝑞=1

from the set of all integration points, that is, {𝒙𝑞}
𝑄
𝑞=1 ⊂ {𝒙̂𝑞}

𝑄
𝑞=1,

such that 𝑄 ≪ 𝑄, with corresponding weights {ℎ𝑞}
𝑄
𝑞=1 obtained

by minimizing the following weighted nonnegative least squares
residual,

hLS = arg minh≥𝟎
||||||b̂ − Â•h||||||𝚺

= arg minh≥𝟎
||||||Âĥ − Â•h||||||𝚺

= arg minh≥𝟎||̂r(h)||𝚺
(56)

where ||a||𝚺 ∶=√a𝑇𝚺a and the residual

r̂(h) ∶= Âĥ − Â•h (57)

are defined,  denotes a set of non-repeating indices with || = 𝑄

and Â• is the submatrix of Â with𝑄 selected columns according
to the entries of . The matrix𝚺 is a weighting matrix with a block
diagonal structure

𝚺 =

⎡⎢⎢⎢⎢⎢⎣

𝑐1𝚺1 𝟎 𝟎 𝟎

𝟎 𝑐2𝚺2 𝟎 𝟎

𝟎 𝟎 𝑐3𝚺3 𝟎

𝟎 𝟎 𝟎 𝚺4

⎤⎥⎥⎥⎥⎥⎦
(58)
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where each block corresponds to one of the approximated quan-
tities defined as,

𝚺1 = diag(𝜎𝒘1 𝜎
𝒀
1 ,… , 𝜎𝒘1 𝜎

𝒀
𝑀,… , 𝜎𝒘𝑁𝜎

𝒀
1 ,… , 𝜎𝒘𝑁𝜎

𝒀
𝑀) ∈ ℝ𝑁𝑀×𝑁𝑀

(59)
𝚺2 = diag(𝜎𝒀1 ,… , 𝜎𝒀1

⏟⎴⏟⎴⏟
𝑑2times

,… , 𝜎𝒀
𝑀
,… , 𝜎𝒀

𝑀
⏟⎴⎴⏟⎴⎴⏟

𝑑2times

) ∈ ℝ𝑑2𝑀×𝑑2𝑀

(60)

𝚺3 = diag(𝜎1 ,… , 𝜎1
⏟⎴⏟⎴⏟

𝑑3times

,… , 𝜎
𝐿
,… , 𝜎

𝐿
⏟⎴⏟⎴⏟

𝑑3times

) ∈ ℝ𝑑3𝐿×𝑑3𝐿

(61)

𝚺4 = diag(1) ∈ ℝ1×1 (62)

The entries 𝜎𝒘
𝑖
, 𝜎𝒀

𝑚
, 𝜎

𝑙
for all 𝑖 = 1,… ,𝑁, 𝑚 = 1,… ,𝑀, and 𝑙 =

1,… , 𝐿 correspond to the ordered normalized singular values of
the POD of the fluctuation field 𝒘p, weighted stress 𝒀p and
weighted higher-order stress 

p, with 𝜎𝒘1 = 𝜎𝒀1 = 𝜎1 = 1. The
parameters 𝑐1, 𝑐2, 𝑐3 enable control over the importance of each
of the approximated quantities. Their influence is illustrated
in Section 4. The blocks of the weighting matrix 𝚺 are chosen in
this fashion to promote the integration scheme to approximate
the basis functions corresponding to larger singular values more
accurately than the ones corresponding to smaller singular val-
ues. The indices in  are selected one by one, similarly to the
greedy algorithm presented in [32]. The exact algorithm on the
selection is provided in Algorithm 1. Here, the residual r̂ is split
into four parts, that is,

r̂ =
[
r̂𝑇1 , r̂

𝑇
2 , r̂

𝑇
3 , r̂

𝑇
4

]𝑇
(63)

where r̂𝑖 for 𝑖 = 1,… , 4 are the residuals for each quantity. Inde-
pendent residuals are introduced to check that each quantity
is approximated accurately up to a precision, depending on the
choice of tolerances 𝜀1, 𝜀2, 𝜀3, 𝜀4, with,

𝑟1 ∶=

||||̂r1
||||𝚺1

tr𝚺1
< 𝜀1, 𝑟2 ∶=

||||̂r2
||||𝚺2

tr𝚺2
< 𝜀2

𝑟3 ∶=

||||̂r3
||||𝚺3

tr𝚺3
< 𝜀3, 𝑟4 ∶=

||||̂r4
||||𝚺4

𝑉
< 𝜀4

(64)

where 𝑟𝑖 for 𝑖 = 1,… , 4 are the standardized norms of the resid-
uals. As will be shown in Section 4, all 𝑟𝑖 generally decay with
different rates, which can, however, be tuned with the parameters
𝑐1, 𝑐2, 𝑐3. The lowest number of quadrature points can be achieved
when all residuals reach the desired tolerances at the same time.
This will be demonstrated in Section 4.

4 | Numerical Examples

To examine and illustrate different features of the proposed
ROM, two macroscopic example problems with a parameter-
ized microstructure are studied in two dimensions and under
plane strain conditions. The results are compared against the full
two-scale second-order CH solution (later referred to as CH2) as
well as the DNS, where the microstructure is fully resolved at the
macroscale. The ROM is discussed in detail in the first example,
whereas the second example shows a possible application, in
which a full DNS might not be feasible anymore (especially
in three dimensions), but the ROM computes an excellent

ALGORITHM 1 | Integration point selection algorithm.

Input: 𝐀̂, 𝐛̂, 𝚺, 𝜀1, 𝜀2, 𝜀3, 𝜀4, 𝑘max
Output: 𝐡LS,
Initialize empty list of selected columns  ← ∅
Initialize list of candidate indices  ← {1, … , 𝑄}
Set iteration number 𝑘 ← 0
Set initial residual 𝐫̂ ← 𝐛̂
while 𝑘<𝑘max do

𝑘 ← 𝑘 + 1
Find the column 𝑖 of 𝐀̂ with

𝑖 = argmax𝑗∈
𝐀̂𝑇
•𝑗
𝚺𝐫̂√

𝐀̂𝑇
•𝑗
𝚺𝐀̂•𝑗

Add selected index  ←  ∪ {𝑖}
Remove selected index from candidates

 ←  ⧵ {𝑖}
Solve Equation (56) for 𝐡LS

Compute residuals 𝐫̂𝑖 according to
Equation (57)

if all conditions in Equation (64) are ful-
filled then

return 𝐡LS,  ⊳ Algorithm has converged
end if

end while

approximation in a reasonable amount of time. Note that the
examples considered here could potentially also be solved with
a satisfactory accuracy using first-order CH (CH1). However, as
the focus of this work is on the reduced-order modeling of CH2,
no comparisons with CH1 are conducted. A systematic and quan-
titative comparison of CH1 and CH2 applied to mechanical meta-
materials can be found in [48].

For both examples, a metamaterial-based RVE with four identical
holes is selected, motivated by Specimen 1 in Bertoldi et al. [49].
The size of the RVE is 2 mm × 2 mm and the local coordinate sys-
tem is chosen in the center of the domain, that is, the domain
of the RVE is given by [−1 mm, 1 mm]2, see Figure 3. Each hole
is described by a cubic B-spline with eight control points, of
which the coordinates are parameterized by one geometrical
parameter 𝝁 = {𝜁}. For the top right hole, the coordinates (in
mm) of the control points are (0.05 + 𝜁, 0.5), (0.125 − 𝜁, 0.125 −
𝜁), (0.5, 0.05 + 𝜁), (0.875 + 𝜁, 0.125 − 𝜁), (0.95 − 𝜁, 0.5), (0.875 +
𝜁, 0.875 + 𝜁), (0.5, 0.95 − 𝜁), (0.125 − 𝜁, 0.875 + 𝜁). The coordi-
nates of the control points for the other holes are obtained by
shifting the coordinates of the top right hole by 1 mm in the 𝑥-
and/or 𝑦-direction, and the same 𝜁 is assumed for each hole.
The geometry of the RVE is shown for different values of 𝜁 =
{−0.075 mm, −0.035 mm, 0.025 mm, 0.055 mm} in Figure 3. The
parent domainΩp, chosen with 𝜁 = 0.025 mm, and its simulation
mesh, consisting of 4882 DOFs and 1066 six-noded triangular ele-
ments, are shown in Figure 3c. A mesh convergence study was
conducted to ensure that the effective quantities obtained with
this mesh are converged with respect to the element size. Note
that the control points (in orange color) are allowed to lie outside
the RVE domain as long as the resulting B-spline curves do not
intersect with the outer boundary of the RVE.

Depending on 𝜁, the shape of the holes changes from a circular
shape to a square-like one. For circular holes, it is known that
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(a) (b) (c) (d)

FIGURE 3 | Example geometries for (a) 𝜁 = −0.075 mm, (b) 𝜁 = −0.035 mm, (c) 𝜁 = 0.025 mm, and (d) 𝜁 = 0.055 mm. The control points defining
the hole shapes are shown in orange and the matrix material in blue. Depending on 𝜁, the shape of the holes is more circular or square-like, and the
RVE more prone to local or global buckling. The parent domain Ωp is chosen for 𝜁 = 0.025 mm with a simulation mesh consisting of 1066 six-noded
triangular elements with 4882 DOFs.

FIGURE 4 | DNS solutions for 𝜁 = −0.035 mm in (a), 𝜁 = 0.03 mm in (b). In each panel, the undeformed (left) and deformed states at 4% (middle)
and 7.5% (right) compression are shown. For 𝜁 = −0.035 mm the structure first buckles locally and then globally, while for 𝜁 = 0.03 mm the structure
first buckles globally with subsequent local patterning.

the RVE buckles locally under compression due to the symmetry
and exhibits auxetic behavior [49], that is, under uniaxial com-
pression in one direction the RVE contracts in the perpendicular
direction. On the other hand, square-like holes promote global
buckling on the macroscale instead of local buckling. This is illus-
trated in Section 4.1, where significantly different behaviors of the
macrostructure are observed when varying 𝜁.

The RVE material is modeled as a hyperelastic Mooney–Rivlin
material with strain energy density function

𝑊(𝑭) = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼1 − 3)2 − 2𝐶1 log 𝐽 + 𝐾

2
(𝐽 − 1)2 (65)

where 𝐼1 ∶= tr𝑪 is the first invariant of the right Cauchy–Green
tensor𝑪 ∶= 𝑭𝑇𝑭 and 𝐽 = det𝑭 characterizes the volume change.
The constants 𝐶1, 𝐶2 and 𝐾 are material parameters, which are
set to 𝐶1 = 0.55 MPa, 𝐶2 = 0.3 MPa, and 𝐾 = 55 MPa, according
to the experimental data in Bertoldi and Boyce [1].

4.1 | Uniaxial Compression of a Perforated
Plate

In the first example, uniaxial compression of a rectangular
perforated plate of size 𝑊 ×𝐻 (width 𝑊 = 6 mm, height
𝐻 = 20 mm) in the longitudinal direction is considered. The
top edge is compressed up to 7.5% strain, while the bottom
edge is fixed, and the geometrical parameter 𝜁 is constant
throughout the macrostructure. As the reference solution,
full DNS solutions, where the microstructure is fully resolved
and for which triangular six-noded elements are used, are
computed for various values of 𝜁. For each DNS model, the
number of elements is approximately 32,000 and number of
DOFs 140,000. For 𝜁 = {−0.035 mm, 0.03 mm}, the undeformed
state together with the deformed solutions at 4% and 7.5% strain
are shown in Figure 4. For 𝜁 = −0.035 mm the macrostructure
first buckles locally (patterning of holes) and then globally
(entire macrostructure buckles). For 𝜁 = 0.03 mm the structure

11 of 20

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7604 by C
ochrane France, W

iley O
nline L

ibrary on [06/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 1 | Parameter bounds used for sampling training data for the ROM.

𝑭𝒙𝒙 − 1 𝑭𝒙𝒚 𝑭𝒚𝒙 𝑭𝒚𝒚 − 1

[−0.1, 0.02] [−0.1, 0.1] [−0.1, 0.1] [−0.1, 0.02]

̂
𝒙𝒙𝒙 [mm−1]

̂
𝒙𝒙𝒚 [mm−1]

̂
𝒙𝒚𝒙 [mm−1]

̂
𝒙𝒚𝒚 [mm−1]

̂
𝒚𝒙𝒚 [mm−1]

̂
𝒚𝒚𝒚 [mm−1]

[−0.05, 0.05] [−0.05, 0.05] [−0.05, 0.05] [−0.05, 0.05] [−0.05, 0.05] [−0.05, 0.05]

Note: The bounds for 𝑭 are motivated by the applied macroscopic compression loads and the auxeticity of the RVE. Bounds for ̂ are assumed to range from −0.05 to
0.05 mm−1.

first buckles globally and then locally, implying that the overall
behavior of the macrostructure changes significantly for
different 𝜁.

For the homogenized plate, a uniform mesh, consisting of two
elements in the horizontal and four elements in the vertical direc-
tion with a total of 32 quadrature points, is chosen, amounting
to 32 microscopic problems that must be solved for each macro-
scopic Newton iteration. This discretization was found to give
converged results in terms of the reaction force. Regarding the
boundary conditions, the displacement is fixed at the bottom
edge and prescribed at the top edge with value 𝑢̃. Since the pre-
scribed displacements do not vary with the 𝑥-axis, we accordingly
set the 𝑥𝑥- and 𝑦𝑥-components of the deformation gradient to
̂
𝐹𝑥𝑥 = 1 and ̂

𝐹𝑦𝑥 = 0 at the top and bottom edge. To prevent zero
energy modes corresponding to the components ̂

𝐹𝑥𝑦 and ̂
𝐹𝑦𝑦 ,

the deformation gradient at the bottom left point is fully fixed
with ̂

𝑭 = 𝑰.

To construct the ROM, training data must be generated by solving
the microscopic problem for different input parameters (𝑭, ̂, 𝝁),
which span an 11-dimensional parameter space in 2D. In total,
100 samples are generated randomly for the loading parameters
(𝑭,

̂
) from a uniform distribution with parameter bounds pro-

vided in Table 1. Since the macrostructure is compressed up to
7.5% in the 𝑦-direction and locally higher deformations might
occur, the lower bound for 𝐹𝑦𝑦 − 1 is chosen as −0.1. Since the
RVE behaves auxetically, the lower bound for 𝐹𝑥𝑥 − 1 is also
assumed to be−0.1. The upper bound for both 𝐹𝑥𝑥 − 1 and 𝐹𝑦𝑦 −
1 is chosen as 0.02 to capture some tensile behavior of the RVE.
Due to the global buckling, large shear strains might occur and
bounds of [−0.1, 0.1] are chosen for𝐹𝑥𝑦 and𝐹𝑦𝑥 . Bounds for ̂ are
difficult to estimate without prior knowledge. Here, every compo-
nent is assumed to range from−0.05 to 0.05 mm−1, which for the
RVE size of 2 mm × 2 mm can result in maximal components of
the deformation gradient/strains in the range of [−0.1, 0.1] with
𝑭 − 𝑰 = 𝒙p ⋅ ̂ and 𝒙p ∈ Ωp = [−1 mm, 1 mm]2.

Subsequently, all samples are divided into five groups,
each with 20 samples and assigned one value of 𝜁 =

{−0.05 mm, −0.025 mm, 0.0 mm, 0.025 mm, 0.05 mm}. For each
sample, the macroscopic loads are applied to the RVE with
(𝑡𝑭, 𝑡

̂
), where 𝑡 ∈ [0, 1] is a parameterization pseudo-time

increased linearly from 0 to 1 in 20 equidistant load steps,
resulting in 20 snapshots per sample. In total, 2000 snap-
shots are obtained which are all used for the construction of
the ROM.

4.1.1 | Results

The accuracy and efficiency of the ROM depends on several
factors:

• the number of basis functions for the fluctuation displace-
ment𝑁, weighted stress𝑀 and weighted higher-order stress
𝐿,

• the error tolerances 𝜀1, 𝜀2, 𝜀3 and 𝜀4, and

• the hyperparameters 𝑐1, 𝑐2 and 𝑐3 that control the weight-
ing matrix 𝚺 of the weighted least squares problem
in Equations (56) and (58).

To choose an adequate amount of basis functions, the singular
values of POD are often utilized, as they give an indication on the
information loss due to the reduction. Given the ordered singular
values {𝜎𝑖}

𝑁S
𝑖=1 of POD, a criterion can be defined with:

1 −
∑𝑁POD
𝑖=1 𝜎2

𝑖∑𝑁S
𝑖=1𝜎

2
𝑖

< POD (66)

where 𝑁S denotes the total number of training snapshots and
POD is a user-specified tolerance. The number of basis func-
tions is then selected to be equal to the smallest 𝑁POD, for
which Equation (66) is fulfilled. For the weighted stress and
higher-order stress, good results were obtained with POD = 5 ×
10−3, for which 𝑀 = 28 and 𝐿 = 28 were found. For the fluctua-
tion field, three values of POD = 1 × 10−4, 1 × 10−5 and 1 × 10−6

were considered, which resulted in 𝑁 = 48, 78 and 112 basis
functions.

Regarding the error tolerances 𝜀1, 𝜀2, 𝜀3 and 𝜀4, numerical tests
for different values were carried out and a good balance in
terms of accuracy and efficiency was found for 𝜀1 = 𝜀2 = 𝜀3 =

𝜀4 = 1 × 10−4.

The choice of the hyperparameters 𝑐1, 𝑐2 and 𝑐3 affects the rates
with which each of the standardized norm of residuals 𝑟1, 𝑟2, 𝑟3
and 𝑟4 (see Equation (64) for the definition) decreases over the
number of selected quadrature points 𝑄. In general, the lowest
number of quadrature points can be found when 𝑐1, 𝑐2 and 𝑐3
are tuned such that all 𝑟𝑖 fall below their corresponding toler-
ances at roughly the same time. In Figure 5, the decay of each
𝑟𝑖 over the selected number of quadrature points with 𝑁 = 48,
𝑀 = 28, 𝐿 = 28 and 𝜀1 = 𝜀2 = 𝜀3 = 𝜀4 = 1 × 10−4 is shown for dif-
ferent choices of 𝑐1, 𝑐2 and 𝑐3. For 𝑐1 = 𝑐2 = 𝑐3 = 1 (see Figure 5a),
it can be clearly seen that 𝑟1 drops much more slowly than 𝑟2, 𝑟3
and 𝑟4, resulting in a total of 𝑄 = 543 quadrature points. When
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(a) (b) (c)

FIGURE 5 | Decay of standardized norm of residuals 𝑟1, 𝑟2, 𝑟3 and 𝑟4, defined in Equation (64), over the number of selected integration points 𝑄
with 𝑁 = 48, 𝑀 = 28, 𝐿 = 28 and 𝜀1 = 𝜀2 = 𝜀3 = 𝜀4 = 1 × 10−4. The hyperparameters 𝑐1, 𝑐2 and 𝑐3 control the rate of decay for each 𝑟𝑖 , which results in
a different number of required quadrature points to reach the same level of accuracy: (a) 𝑄 = 543, (b) 𝑄 = 358, whereas (c) only 𝑄 = 297 quadrature
points are selected. The same 𝑥-axis range is used for all plots to highlight that much fewer quadrature points are selected for different combinations of
𝑐𝑖 . (a) 𝑐1 = 1, 𝑐2 = 1, 𝑐3 = 1. (b) 𝑐1 = 10, 𝑐2 = 1, 𝑐3 = 1. (c) 𝑐1 = 10, 𝑐2 = 1.6, 𝑐3 = 1.1.

(a) (b) (c)

FIGURE 6 | Force-displacement curves for 𝜁 = −0.035 mm (i.e., circular holes buckling first locally) for different numbers of basis functions 𝑁 for
the fluctuation field. The ROM solution closely follows the POD solution, implying that the proposed hyperreduction algorithm yields accurate results.
For increasing number of fluctuation displacement basis functions 𝑁, the POD and ROM solution both approach that of CH2. (a) 𝑁 = 48, 𝑄 = 297. (b)
𝑁 = 78, 𝑄 = 318. (c) 𝑁 = 112, 𝑄 = 337.

increasing 𝑐1 to 10 (see Figure 5b), 𝑟1 drops more quickly, ending
up in a total number of 𝑄 = 358 quadrature points. Finally, for
values of 𝑐1 = 10, 𝑐2 = 1.6 and 𝑐3 = 1.1 (see Figure 5c) all toler-
ances are achieved at roughly the same time with only 𝑄 = 297
quadrature points. For𝑁 = 78 and 112,𝑄 = 318 and 337 quadra-
ture points are found when all other hyperparameters are kept
constant.

To evaluate the accuracy of the ROM for 𝑁 = 48, 78 and 112
basis functions for the displacement, the two-scale compression
of the perforated plate is solved for 𝜁 = −0.035 mm (recall that
the training data was sampled for 𝜁 = {−0.05 mm, −0.025 mm,
0.0 mm, 0.025 mm, 0.05 mm}), and the total resulting reaction
force 𝑅 acting on the top edge is plotted over the prescribed dis-
placement 𝑢̃ and compared to the DNS, CH2 and POD solutions
in Figure 6 (𝑅 and 𝑢̃ are normalized with the width𝑊 and height
𝐻 of the plate to yield nominal quantities). Here, POD denotes
the solution obtained with the POD basis in Equation (37), but
with full integration of the reduced system, that is, computing the
integrals in Equations (38) and (39) (as well as Equations (26–33),

(35) and (36)) with Gauss quadrature. The ROM closely follows
the POD solution, showing that the reduced integration is very
accurate. It is also clear that the prebuckling stage and buck-
ling point predicted by CH2 are sufficiently accurate already
for 𝑁 = 48, but small deviations from the CH2 solution can be
observed for increasing 𝑢̃ in the postbuckling stage. This error
is decreased by increasing 𝑁 to 78 or 112. Moreover, it can be
observed that CH2 predicts a slightly higher prebuckling stiffness
than the DNS, which was also observed in [48], and is unable to
predict the second (global) buckling point (at around 6% strain),
illustrating some modeling limitations of the CH2 scheme.

In Figure 7, a similar comparison is performed for 𝜁 = 0.03 mm
with 𝑁 = 48, 78 and 112. The POD and ROM solutions match
well for all𝑁, but both overestimate the (post-)buckling behavior
of the CH2 solution. Even though with increasing 𝑁 the buck-
ling point is predicted more accurately, the postbuckling stiffness
is captured poorly. This suggests that the generated training data
does not properly cover the kinematics during the postbuckling
stage and more representative training data is required for good
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(a) (b) (c)

FIGURE 7 | Force-displacement curves for 𝜁 = 0.03 mm (i.e., square-like holes buckling first globally) for different numbers of basis functions 𝑁
for the fluctuation field. Similarly to 𝜁 = −0.035 mm, the ROM solution closely follows the POD solution. Both POD and ROM solutions approximate
the CH2 solution poorly, implying that the training data is not representative for the global buckling of the macrostructure. (a) 𝑁 = 48, 𝑄 = 297. (b)
𝑁 = 78, 𝑄 = 318. (c) 𝑁 = 112, 𝑄 = 337.

(a) (b) (c)

FIGURE 8 | (a) Employed coarse RVE mesh for generating a more representative training dataset. The resulting ROM has 𝑁 = 48 displacement
basis functions and 𝑄 = 278 integration points, and its solution closely follows the CH2 solution for both (b) 𝜁 = −0.035 mm and (c) 𝜁 = 0.03 mm. The
result of the full CH2 model with the coarse RVE mesh is also shown for comparison.

approximations. Compared to the DNS solution, CH2 captures
the postbuckling stiffness quite accurately, however, it overpre-
dicts the buckling point, the prebuckling stiffness, and is again
unable to detect the second buckling which occurs at around 4.5%
strain.

To demonstrate that the results for 𝜁 = 0.03 mm are improved
by employing a more representative training dataset, we gen-
erated another training dataset by employing the following
procedure:

1. First, we solved the full CH2 problem with a coarse
RVE mesh (142 six-noded elements with 746 DOFs,
see Figure 8a) for 𝜁 = {−0.05 mm, −0.025 mm, 0.0 mm,
0.025 mm, 0.05 mm}.

2. This way, for each value of 𝜁 a loading trajectory of values
of {(𝑭, ̂)} for each of the 32 macroscale quadrature points
is collected.

3. For each 𝜁, the microscopic problem is solved with the
fine mesh (see Figure 3c) along all 32 trajectories {(𝑭, ̂)},
and snapshots of the fluctuation displacement𝒘p, weighted
stress 𝒀p and higher-order stress p are gathered.

TABLE 2 | Run times for DNS and three ROM solutions with𝑁 = 48,
𝑁 = 78 and 𝑁 = 112.

DNS ROM48 ROM78 ROM112

𝜁 = −0.035 mm 153 s 30 s 48 s 100 s
𝜁 = 0.03 mm 307 s 69 s 132 s 244 s

Note: As this problem is quite small, the DNS can be computed efficiently, and the
speed ups are not that high for the ROMs.

4. All snapshots computed with the fine mesh are utilized to
construct the ROM.

The resulting ROM for 𝑁 = 48 displacement basis functions
has 𝑄 = 278 quadrature points (with 𝑀 = 28 and 𝐿 = 28), and
the resulting force-displacement curves for 𝜁 = −0.035 mm and
𝜁 = 0.03 mm are shown in Figure 8b,c. The ROM solution
approaches the CH2 solution nearly perfectly for both cases,
showing the importance of the training dataset. Additionally,
the results of the full CH2 solution with the coarse RVE mesh
are also shown, which shows much less accurate (post-)buckling
behavior.
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All simulations were executed on an Intel Xeon Platinum 8260
processor. The run times are reported in Table 2. Computing the
DNS solutions for 𝜁 = −0.035 mm and 0.03 mm took 153 and
307 s with one thread. The significant differences in computa-
tional times are caused by the global buckling, which requires
many more load steps for convergence as compared to the local
buckling. The ROM with 𝑁 = 48, after the offline stage is com-
pleted, took 30 and 69 s for both simulations with one thread,
achieving an online speed-up of 5 times as compared to the DNS
solver. With𝑁 = 78 and𝑁 = 112, both simulations took 48 s (𝜁 =
−0.035 mm) and 132 s (𝜁 = 0.03 mm), and 100 s (𝜁 = −0.035 mm)
and 244 s (𝜁 = 0.03 mm). Concerning the offline stage of the ran-
domly generated dataset, with one thread, 100 samples with each
20 load steps were computed in 1020 s, and constructing the ROM
took another 80 s. For the more representative training dataset,
the generation took significantly longer as full two-scale simula-
tions need to be run. Note that the offline and online stage with
the ROM can easily be parallelized, since all RVEs can be solved
independently, which would increase the speed-up. On the other
hand, DNS parallelization is less straightforward and more dif-
ficult to achieve. CH2 and POD took much longer as compared
to the DNS since the considered scale separation is relatively
low.

While this example problem might not be suitable for homoge-
nization since the DNS solution can be obtained quickly, it shows
that the ROM can accurately approximate the POD solution, that
is, the proposed algorithm for finding a sparse integration scheme
works well. Moreover, the POD solution approaches the CH2
solution (provided the training data is representative), which in
turn approximates the DNS well.

4.2 | Biaxial Compression of Graded Cruciform

The second example deals with the biaxial compression of
a graded cruciform-shaped macrostructure with varying hole
shapes (i.e., spatially varying 𝜁 field) throughout the domain,
see Figure 9. Each side edge has length 30 mm, and the cut out
parts at each corner are quarter circles with a radius of 15 mm.
Both example parameterizations shown in Figure 9 are consid-
ered and computed with the DNS, CH2 and the ROM solver.
The discretized DNS problem has for Figure 9a 3,475,044 DOFs
and 800,889 elements, and 3,627,610 DOFs and 839,580 elements
for Figure 9b. Each side edge is compressed by 2% in the nor-
mal direction, while being fixed in the tangential direction. For
CH2 and the ROM, additionally, the 𝑥𝑥- and 𝑦𝑥-components
of the deformation gradient are fixed to ̂

𝐹𝑥𝑥 = 1 and ̂
𝐹𝑦𝑥 = 0

on the top and bottom horizontal edges, and the 𝑥𝑦- and
𝑦𝑦-components of the deformation gradient are fixed to ̂

𝐹𝑥𝑦 = 0
and ̂

𝐹𝑦𝑦 = 1 on the left and right vertical edges. The simu-
lation meshes employed for CH2 and the ROM are shown
in Figure 10.

Since the deformation of this example is similar to the previous
example in Section 4.1, the already trained ROM (with randomly
generated training data, compare Table 1) is re-used here with
𝑁 = 48, 78 and 112 displacement basis functions with 𝑄 = 297,
318 and 337 integration points, and referred to as ROM48, ROM78
and ROM112.

4.2.1 | Results

Both example geometries are solved with DNS, CH2 and the
three ROM solvers (ROM48, ROM78 and ROM112). To compare

FIGURE 9 | Two geometries are solved with the DNS solver. (a) 𝜁 = 0.03 mm is set for the top right and bottom left part (in blue), and 𝜁 =

−0.05 mm for the top left and bottom right part (orange). (b) 𝜁 = 0.05 mm is set in the center (orange) for 𝒙 ∈ [18 mm, 42 mm] × [18 mm, 42 mm]
and 𝜁 = −0.075 mm elsewhere (blue). Six-noded triangular elements are employed for both geometries, resulting in (a) 3,475,044 DOFs and 800,889
elements, and (b) 3,627,610 DOFs and 839,580 elements. (a) Geometry 1. (b) Geometry 2.
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FIGURE 10 | Discretization of the homogenized cruciform used for CH2 and ROM. (a) 𝜁 = 0.03 mm is set for the blue elements and 𝜁 = −0.05 mm
for the orange elements. (b) The orange and blue elements correspond to 𝜁 = 0.05 mm and 𝜁 = −0.075 mm, respectively. The meshes have (a) 48 and
(b) 28 elements with four quadrature points each. (a) Geometry 1. (b) Geometry 2.

(a) (b)

FIGURE 11 | Force-displacement curves for both example geometries of Figures 9 and 10 obtained for DNS, CH2, and three ROMs with different
numbers of basis functions 𝑁 and quadrature points 𝑄. (a) All ROM solutions are close to the CH2 solution. The CH2 solution approximates the DNS
adequately. (b) The ROMs do not recover the CH2 solution accurately, since 𝜁 = −0.075 mm is outside the training data. For higher numbers of basis
functions, the approximation gets increasingly more accurate, and for ROM112 only small deviations are observed during the postbuckling stage. CH2
is unable to predict the correct buckling load. (a) Geometry 1. (b) Geometry 2.

the results, the total resulting reaction force 𝑅 acting on the top
edge, normalized with the length of the edge 𝑊 = 30 mm, is
plotted over the applied displacement 𝑢̃, normalized with the
total height 𝐻 = 60 mm, in Figure 11. For the first geometry
(see Figure 11a), all ROM solutions recover the CH2 solution
nearly perfectly. As compared to the DNS solution, CH2 again

predicts a higher prebuckling stiffness, but the buckling load
and postbuckling stage are predicted quite well. For the sec-
ond geometry (see Figure 11b), CH2 cannot capture the cor-
rect buckling load. Since in this example, the center part is set
to 𝜁 = −0.075 mm, which is outside the training data (sampled
from 𝜁 = {−0.05 mm, −0.025 mm, 0.0 mm, 0.025 mm, 0.05 mm}),
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FIGURE 12 | Displacement fields for Geometry 1 obtained with DNS (top row) and with ROM48 (bottom row). The shear band forming along the
diagonal is clearly captured.

ROM48 is not able to follow the CH2 solutions closely. The error
reduces with 𝑁 = 78 and 112. For both geometries, both compo-
nents of the displacement field at the final loading are shown for
the DNS and ROM48 solutions in Figures 12 and 13, where clearly
the trend and magnitudes of the displacement fields are compara-
ble. Deformed RVEs at selected quadrature points of the ROM48
solutions are also shown, which behave similarly to the DNS at
similar location.

The run times (using one thread of Intel Xeon Platinum 8260)
are reported in Table 3. Solving both problems with the DNS
solver took 15,129 and 14,087 s, while with ROM48 it took 164
and 101 s, implying online speed-ups of 92 and 139 times. With
ROM78, the run times were 369 and 333 s, meaning speed-ups of
41 and 42 times. With ROM112, the solution took 975 and 439 s,
which still amounts to online speed-ups of 15 and 32 times. The
computational costs of the offline stage are the same as reported
for the previous example in Section 4.1. The obtained speed-ups
could be greatly increased by using more threads due to the supe-
rior scaling of the multiscale formulation over the DNS. The

run times of CH2 are again much higher than the run times
of DNS.

The DNS solution took several hours (with one thread), mostly
because of the detection of instabilities (i.e., checking the sys-
tem matrix for negative eigenvalues and eigenvalues close to
zero). If a large-scale problem (in 3D) was considered, the DNS
solution might become infeasible, since (1) detecting negative
eigenvalues is computationally expensive, and (2) negative eigen-
values of the system matrix may cause problems for iterative
solvers, while direct solvers become too computationally expen-
sive for such large systems. On the other hand, the ROM solu-
tion should remain relatively computationally inexpensive, since
the solver can be easily parallelized by solving all RVE prob-
lems at the macroscopic integration points in parallel. An addi-
tional advantage of the ROM is that, after training, different
geometrical parameters inside the macrostructure can be eas-
ily tuned, while for the DNS, the meshing can become expen-
sive and challenging, especially for 3D problems. This makes this
ROM an interesting candidate for the material design of buckling
structures.
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FIGURE 13 | Displacement fields for Geometry 2 obtained with DNS (top row) and with ROM48 (bottom row). The sharp transition in the center
due to the sharp change in 𝜁 is more or less captured.

TABLE 3 | Run times for DNS and three ROM solutions with𝑁 = 48,
𝑁 = 78 and 𝑁 = 112.

DNS ROM48 ROM78 ROM112

Geometry 1 15,129 s 164 s 369 s 975 s
Geometry 2 14,087 s 101 s 333 s 439 s

Note: For all ROMs, large online speed ups are observed for both geometries.

5 | Conclusions

In this work, we proposed a ROM for CH2, based on POD
and a novel hyperreduction method that uses ideas from the
ECM that is specifically suited for CH2. Several aspects on the
derivation of the reduced system, including the treatment of
constraints and geometrical parameterizations, expressions for
the effective quantities, and the novel hyperreduction algorithm
were discussed. Afterwards, the ROM was tested on two numer-
ical examples, in which the macrostructures are compressed
and multiscale buckling occurs. The ROM solutions were crit-
ically evaluated by comparison against the results obtained by
DNS and the full CH2 model. The first example demonstrated

that the proposed hyperreduction algorithm discovered integra-
tion points and weights that yield accurate results for several
parameterizations of the microstructure. The second example
concerned a more complex application, in which the geometry
of the microstructures is varied within the macroscopic domain,
and for which the DNS solution takes a substantial amount of
time to compute. When employing the ROM for this problem,
speed-ups ranging from 15 to 139 as compared to the DNS were
achieved with one thread. These speed-ups could be further
increased by employing more threads, since, in general, the mul-
tiscale problem scales much better than the DNS.

To the best of our knowledge, this work is the first attempt of
accelerating an enriched computational homogenization formu-
lation. Although we proposed a ROM for CH2, we are confident
that our findings and employed methods also extend to other for-
mulations, for example, based on micromorphic computational
homogenization. It would also be interesting to test the method-
ology on more complicated material models, such as damage and
fracture. As different parameterizations of the microstructure can
be treated as well, interesting applications can be realized with
this framework, such as two-scale shape optimization problems,
design of materials and uncertainty quantification.
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