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Abstract

In recent years, the design of macrostructures with (quasi-)periodic microstruc-
tures, such as composite materials or metamaterials, has attracted significant
interest due to their programmable and exotic properties. Resolving these mi-
crostructures at the macroscale and directly simulating such a macrostructure is
computationally expensive or even infeasible because of the complex geometry
of the microstructures, which necessitate extremely fine simulation meshes. To
tackle this issue, two-scale methods based on computational homogenization
are often employed, in which the microstructure, defined on a representative
volume element, and a homogenized macrostructure are separately defined,
coupled, and concurrently solved.

Unfortunately, solving such two-scale models remains computationally de-
manding due to the repeated solution of the microstructure. In this thesis,
we have developed several reduced-order models for the microscopic problems
that arise in first- and second-order computational homogenization. Both
non-intrusive and intrusive methods have been utilized to accelerate nonlinear
microstructures. The derived surrogate models have been validated and as-
sessed through several numerical experiments in two scales, and the surrogate
results have been compared to the solutions obtained with the direct numerical
solution and the full computational homogenization model. For all problems,
we have achieved good agreement and significant computational speed-ups.

Keywords: Computational homogenization, parameterized partial differen-
tial equations, proper orthogonal decomposition, Gaussian process regression,
surrogate modeling, hyperreduction, empirical cubature method, geometrical
transformations.
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Notation

All vectors and tensors are defined in a d-dimensional Cartesian coordinate
frame, with ei, i = 1, . . . , d, the unit basis vectors. The Einstein summation
convention is assumed on repeated indices.

• scalars a,

• vectors a = aiei,

• position vector x = xiei,

• second-order tensors A = Aijeiej ,

• third-order tensors A = Aijkeiejek,

• fourth-order tensors A = Aijkleiejekel,

• matrices A and column matrices a,

• a · b = aibi,

• a⊗ b = aibjeiej ,

• Ab = Aijbjei,

• AB = AikBkjeiej ,

• A : B = AijBij ,

• A⊗ b = Aijbkeiejek,

• b⊗A = biAjkeiejek,

• A⊗B = AijBkleiejekel,

• a ·A = aiAijkeiej ,

• A ... B = AijkBijk,



xii Notation

• A : B = AijklBkleiej ,

• A : B = AijBijklekel,

• transpose AT , AT
ij = Aji,

• trA = Aii

• gradient operator with respect to vector x

∇xa =
∂ai
∂xj

eiej , ∇xA =
∂Aij

∂xk
eiejek,

• gradient operator with respect to second-order tensor B

∇BA =
∂Aij

∂Bkl
eiejekel, ∇BA =

∂Aijk

∂Blm
eiejekelem,

• gradient operator with respect to third-order tensor B
∇BA =

∂Aij

∂Bklm
eiejekelem, ∇BA =

∂Aijk

∂Blmn
eiejekelemen,

• divergence operator with respect to x

∇x ·A =
∂Aij

∂xi
ej , ∇x ·A =

∂Aijk

∂xi
ejek,

• Gateaux derivative of a functional G around state a in a direction ∆a

DG|a · (∆a) =
d

dτ
G(a+ τ∆a)

∣∣∣∣
τ=0

.



Chapter 1

Introduction

Driven by advances in additive manufacturing and design of effective properties
for specific applications, there has been a growing interest in understanding the
structure-property relationships of complex microstructures. These microstruc-
tures can consist of several distinct phases (composite materials, see Fig. 1.1a
for an example of a fiber-reinforced composite material) that have attractive
effective properties, such as high stiffness, high strength, low weight, etc., due
to the interaction of different constituents [60]. Composite materials have
found extensive use in diverse sectors, including aerospace [82] and automotive
industries [102].

Alternatively, a carefully designed geometry (metamaterials, see Fig. 1.1b
for an example lattice metamaterial) can lead to exotic effective properties,
such as, for example, negative Poisson’s ratio [8], negative compressibility [35],
or negative refractive index [108]. Such materials have been used as filters to
absorb certain bandwidths of frequencies [72], or to act as acoustic cloaks [138].
Additionally, such materials have been applied in impact mitigation [131]
or biomedical applications [96, 43]. A broad overview on their engineering
applications can be found in [128].

The design space for such microstructures typically involves material and
shape parameters, which can result in distinct types of effective behaviors. To
study the nonlinear effects of microstructures on effective properties, direct
numerical simulations (DNS) are typically utilized. However, as these simu-
lations involve multiple scales, they are generally computationally expensive
or even intractable, especially for large-scale engineering applications, since
considerably fine meshes are required to capture the complex multiscale geo-
metry. In multi-query contexts, such as the design of materials, where numerous
simulations are necessary, the computational costs become infeasible.
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(a) (b)

Figure 1.1: (a) Fiber-reinforced composite material, adapted from [17], and (b) lattice
metamaterial, adapted from [152].

1.1 Numerical methods for multiscale problems

Over the last few decades, various methodologies have emerged for the efficient
treatment of the multiscale partial differential equation (PDE). In general,
a split into a macro- and microstructure is performed, which is illustrated
schematically in Fig. 1.2 for a composite microstructure with matrix (grey) and
inclusions (black). The microstructure is modeled on a representative volume
element (RVE) of length scale l, which captures all fine-scale features, while
the macrostructure of size L is coarse-grained. The size of the RVE is chosen
such that its behavior is representative for the microstructure, and effective
properties can be computed from it that are utilized for the homogenized
macrostructure. Depending on the scale ratio η := L/l, different methods are
employed. The most notable methods for addressing the multiscale problem
are summarized here, categorized as methods for structures with large or small
scale separation.

Figure 1.2: Split of multiscale problem into macro- and microscopic problem.
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1.1.1 Large scale separation

If the length scale of the microstructural features is much smaller than that
of the macrostructure (in practice often assumed when η ≥ 10), then the
microstructure can be treated as a point on the macroscale. This way, the
coarse-grained macrostructure can be modeled as a standard Cauchy continuum
and the microstructure essentially establishes a relation between macroscopic
strain and stress, see Fig. 1.2.

Analytical homogenization For linear elastic materials, several analytical
methods were proposed to estimate the effective stiffness of the microstructure.
A few notable methods are compiled here.

By assuming uniform strains or stresses in heterogenous materials, upper and
lower bounds of the effective stiffness were derived in Voigt [137] and Reuss [112].
The results were later extended for large deformations by Taylor [132] and
Sachs [118]. These bounds typically only provide very rough estimates, as they
only account for the volume fraction of each component and do not consider the
morphology. Sharper bounds on the bulk and shear moduli were derived using
variational formulations in Hashin and Shtrikman [47]. Eshelby [29] studied and
derived analytical solutions for the stress field of a single ellipsoidal inclusion
in an infinite matrix. Later, Mori-Tanaka used Eshelby’s result and proposed a
method [92] to derive explicit formulas for the effective stiffness tensor, local
stresses, and strains for short fiber composites. For all the mentioned methods,
there exist numerous extensions and applications, for which a broad overview
can be found in [119].

Asymptotic homogenization By assuming rapidly oscillating and periodic
material coefficients (due to the fast switching between different phases) and
employing an asymptotic expansion of the solution field u of the underlying
governing equation [4, 7],

u ≈ uϵ(x) ≈ u0

(
x,

x

ϵ

)
+ ϵu1

(
x,

x

ϵ

)
+ ϵ2u2

(
x,

x

ϵ

)
+ . . . ,

where ϵ := 1/η is defined and y := x/ϵ are fine-scale coordinates assumed to
be independent of x, a hierarchical set of equations on different scales can be
derived and solved. These equations define the local cell (microscopic) problem,
which is formulated on an RVE and can be solved to find the effective stress
and stiffness of the microstructure, and also the averaged macroscopic problem.
This approach is very general and does not require any specific assumptions
about the microstructure, aside from periodicity. By including more terms
in the expansion, higher-order equations can be derived, enabling accurate
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solutions for problems without a large scale separation. This has been studied
quantitatively for a composite material in Ameen et al. [1], where different
numbers of expansion terms were tested.

First-order computational homogenization In recent years, first-order
computational homogenization (CH) has become a popular framework to study
composite materials [127, 93, 89, 86, 133, 37, 85]. The fine-scale geometry of
the microstructure is defined in full detail on an RVE, while a coarse-grained
representation of the macrostructure with a much coarser discretization is
assumed at the macroscale, see Fig. 1.2. The macroscopic strain is used to
define a microscopic PDE which is then solved to return an effective stress
and stiffness. This methodology is similar to the asymptotic homogenization
approach. In fact, if a periodic microstructure is assumed, the same two-scale
formulation can be derived with asymptotic homogenization [4].

1.1.2 Small scale separation

When both micro- and macroscales are of comparable size, i.e., η ≤ 10, it is often
insufficient to only communicate the macroscopic strain with the microstructure,
as size and boundary effects play a significant role [1]. To obtain a more accurate
homogenized approximation, more information, such as, for example, the strain
gradient or other quantities, must be considered, resulting in an enriched
two-scale problem. If all information must be communicated (for η ≈ 1), the
problem can be solved with a domain decomposition: the macroscopic domain
is decomposed into subdomains, each subdomain is solved independently on
the interior, and coupled at the subdomain interfaces.

Enriched computational homogenization Enriched methods, such as
second-order CH [69] or micromorphic CH [36], extend the first-order formu-
lation by introducing additional quantities and equations. For micromorphic
CH, additional quantities, that are essential to describe the behavior of the
underlying microstructure, are introduced at the macroscale and communicated
between both scales. To determine the evolution of these quantities, additional
equations are included and a coupled system is solved at the macroscale. As
an example, the average strain of the inclusions inside a composite RVE was
introduced as an additional quantity in Biswas and Poh [14]. In Jänicke et
al. [58], microrotations were considered as additional quantities for cellular
materials. For buckling elastomeric metamaterials, prior knowledge on the
buckling modes was embedded into the micromorphic framework presented in
Rokoš et al. [114].
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For second-order CH, a strain gradient formulation is considered at the
macroscale, i.e., the gradient of the strain (or deformation gradient) is required,
giving rise to a length-scale associated with the length-scale of the underlying
RVE, thus making it possible to capture size and non-local effects. To ensure
a proper scale transition of the kinematical quantities, additional constraints
were derived in Kouznetsova et al. [69]. However, their model leads to artificial
stress concentrations at the corners of the RVE, and other formulations were
proposed that attempt to improve the model [61, 79, 140, 148]. The influence
of the microscopic boundary conditions was studied in [61]. In Luscher et
al. [79], additional constraints were derived from orthogonality conditions on
the different components of the displacement field on the RVE, and in Wu
et al. [140] and Yvonnet et al. [148] body forces were included to account for
additional effects.

Domain decomposition and multiscale/generalized FE methods Do-
main decomposition (DD) methods [135, 104, 33] are powerful tools, since they
do not introduce any approximation of the fully resolved problem in one scale.
By dividing the domain into smaller subdomains and coupling them at the
interfaces, the problem becomes highly scalable, since each subdomain can be
treated independently. Each subdomain can correspond to one RVE, in which
case the displacement of the interfaces correspond to the coarse-grained macro-
structure. One notable DD method is the so-called FETI-DP [32], where the
problem is solved in the corner points of each subdomain and in the Lagrange
multipliers that enforce the interface continuities.

DD methods also have close connections to generalized or multiscale FE [55,
3, 81] methods. In these methods, the local subdomain problems are solved
for specific boundary conditions, and problem-dependent FE basis functions
are obtained, which are then used to discretize the macroscopic domain. These
basis functions capture the effective behavior of each subdomain.

DD methods have also been combined with parametric model order re-
duction methods to increase the computational efficiency. In the reduced
basis element (RBE) method [80], each subdomain is accelerated with a re-
duced basis and the interfaces are coupled weakly in a non-conforming manner
with Lagrange multipliers. In [100], the static condensation reduced basis
element (SCRBE) was introduced where the internal degrees of freedom of
each subdomain are represented by a reduced basis and condensed out, res-
ulting in a conforming approximation space on the interfaces (also referred
to as ports in this context). Those ports correspond to multiscale FE basis
functions, which are then employed to solve the macroscopic problem, similar as
in [55, 3, 81]. Constructing optimal local approximation spaces for these ports
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in two-component systems was discussed in [122], and finding them by local
solutions of the PDE with random boundary conditions was proposed in [19].
In the context of solid mechanics, recent applications of such methods include,
for example, [26, 50, 51]. For a more comprehensive overview of concepts in
localized model order reduction, the interested reader is referred to [18].

1.2 Reduced order models for computational
homogenization

To numerically solve the two-scale problem arising in CH, a microscopic PDE
needs to be solved at every macroscopic integration point, see Fig. 1.2, making
CH still computationally expensive for realistic engineering applications. To
overcome this computational burden, several different reduced order models
have been proposed to speed up or to replace the microscopic simulation in
first-order CH. These can be largely classified according to how they treat
parameters, and according to the level of their intrusiveness. The ability to
handle parameterized problems makes a method suitable for inverse tasks
such as parameter identification, material design or optimization. Intrusive
methods require the modification of the underlying PDE solver, making them
less practical to use. In contrast, non-intrusive (data-driven) methods can
be wrapped around an already existent PDE solver, allowing for a simpler
adoption.

While there is a wide range of works on accelerating the first-order CH
model, there have been no attempts at the reduced order modeling of any
enriched formulations to the best of our knowledge. A summary on the existing
methods for first-order CH is provided below.

1.2.1 Non-intrusive methods

Data-driven methods typically involve the following procedure: first, a large
dataset is generated from microscopic simulations, and subsequently, an effective
constitutive model is trained from the data, i.e., a mapping from strains to
stresses is established through a regression model. Afterwards, the macroscopic
problem can be solved on one scale.

A popular data-driven framework was introduced in Kirchdoerfer et al. [67]
and extended in [68, 28, 63]. These works propose a distance minimizing
scheme, with which pairs of strain and stress data can be directly utilized
inside a simulation without the need of deriving an empirical constitutive model.
This dataset can come either from experiments or (microscopic) simulations.
However, due to the nature of this method, it is only able to describe and
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reconstruct a given material dataset, and cannot be used to find optimal
microstructures.

Recognizing that stress-strain data is generally difficult to obtain from
experiments, a slightly different approach was introduced in Huang et al. [57,
143], where the constitutive model is approximated by a neural network, which is
then inversely trained from load-displacement data. Unfortunately, the trained
parameters inside the neural network (weights and biases) do not represent
actual physical parameters, and therefore the method can only describe the
given dataset.

Several other works attempted to learn a constitutive model directly from
pairs of stress and strain data with different neural network architectures [38,
39, 40, 141, 78, 94, 75, 84]. After the pioneering works in Ghaboussi et al. [38],
several works have applied deep neural networks (DNN) to different areas
of constitutive modeling. In [40, 141, 78], different recurrent neural network
architectures were proposed to learn an inelastic material model from stress
and strain loading data that were obtained from RVE simulations. However,
the models were trained only with deformation data and did not consider
parameters, inhibiting their use for finding new materials and designs. Recent
works have also attempted to overcome this challenge. In Le et al. [73], it was
proposed to use neural networks to learn the effective potential of a hyperelastic
material from which the effective stress and stiffness can be derived, while
also including multiple microstructural parameters. In Mozaffar et al. [94]
a recurrent neural network was proposed that can simultaneously treat both
inelastic material behavior and material parameters, and the stress prediction for
a class of composite materials was illustrated. More recently, works [75, 84, 143]
have also attempted to construct a neural network that learns constitutive
models that fulfill the thermodynamical laws as defined in [97].

Although these neural network-based methods are capable of finding accur-
ate surrogate models, they typically require huge amounts of data, which are
often generated from simulations. For complex microstructures, running these
simulations repeatedly might be computationally too expensive. Furthermore,
these surrogate models generally only consider the effective quantities, which
are obtained by averaging the microscopic quantities, and neglect all the field
information of the microscopic simulation and the microscopic physics. This
also makes it difficult to quantify the errors of the predictions, as the connection
between macro- and microstructure is completely lost and local microscopic
quantities can no longer be recovered.
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1.2.2 Intrusive methods

Intrusive methods attempt to accelerate the existing microscopic solver. For
instance, if the fast Fourier transform (FFT) [93, 91] is used to simulate the mi-
crostructure, its solution can be accelerated by the (nonuniform) transformation
field analysis (see, e.g., [27, 87]), or self-consistent clustering analysis [77, 147].
One disadvantage of FFT is that parameterizations of the RVE cannot be
directly treated and, hence, sensitivities for material optimization cannot be dir-
ectly computed. Furthermore, FFT has convergence issues when high stiffness
contrasts are considered in the microstructure.

If the microscopic problem is solved via the FE method, the resulting
multiscale formulation is referred to as FE2 [34, 37, 88]. By directly solving
the microscopic PDE with FE, material or shape parameterizations can be
considered in a straightforward manner, making the approach more suitable for
inverse problems and optimization. To speed up the microstructural simulation,
proper orthogonal decomposition (POD) [103, 52] can be utilized to find a
reduced set of basis functions; the method then computes the Galerkin projection
of the solution onto the space spanned by the reduced basis. Although POD
generally requires several full-order solves for constructing the reduced basis,
it typically works well for all input parameters. In the context of first-order
CH, POD was first applied in Yvonnet et al. [149] for a hyperelastic RVE, and
later explored in Radermacher et al. [106] for an elasto-plastic RVE under small
strains.

However, due to the non-linearities of the microscopic problem, the speed-
ups were limited since the global force vector and stiffness matrix must be
assembled by full integration in every microscopic Newton iteration. To address
this issue, a further reduction called hyperreduction is required, which aims
at finding an efficient way of assembling microstructural force and stiffness
quantities. Notable hyperreduction methods are empirical interpolation method
(EIM) (see, e.g., [5]), a variant of EIM called discrete empirical interpolation
method (DEIM) (see, e.g., [23]), energy-based mesh sampling and weighting [30],
reduced integration domain [117], empirical quadrature procedure [145], and
empirical cubature method (ECM) [48]. EIM and DEIM interpolate the non-
linear integrand of the global force vector such that the integrals can be pre-
computed. In [49, 124], DEIM was used successfully to accelerate the solution
of the microscopic PDE. However, these works only discussed the solution
of the microscopic PDE and did not derive the effective stress and stiffness
quantities required for the macroscopic problem. A possible disadvantage of
EIM and DEIM is that they lead to non-symmetric tangent matrices, which
might result in convergence issues, observed in, for instance, [124, 107]. The
rest of the above-mentioned hyperreduction methods aim at approximating
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the integrals by finding a subset of integration points with corresponding
positive weights among the set of all integration points used in the formulation
of the microscopic PDE. This has the advantage that the stiffness matrix
is always symmetric and at least positive semi-definite (in practice usually
positive definite unless instabilities occur), ensuring a good convergence of the
microscopic problem. Hyperreduction methods have been successfully employed
in two-scale simulations in [20], where an elasto-plastic composite RVE under
large deformations was considered, and in [109], where a damage model for
a composite RVE under small deformations was handled. While both works
obtained accurate results and successfully accelerated the forward simulations
of a two-scale problem, such formulations were limited to fixed microstructures
only, i.e., did not account for possible parameterizations. In order to allow for
optimization of microstructures, the surrogate model needs to be extended to
a wide range of different design parameters (including geometrical as well as
material).

1.3 Main contributions

Based on the above discussion, there are several open issues in the reduced
order modeling of CH:

1. Although the existing non-intrusive methods can find good approximations
of the effective constitutive model, they typically require large amounts
of data, neglect the microscopic quantities and physics, their predictions
are hard to interpret, or design parameters cannot be treated.

2. The existing intrusive methods have so far only been applied to fixed
microstructures and can therefore not be utilized for design or optimization
applications.

3. Many reduced order models have been developed for first-order CH.
However, there are no works for other CH schemes to the best of our
knowledge.

To address these issues, in this work, both non-intrusive and intrusive reduced
order models are developed for first- and second-order computational homogen-
ization, with particular focus on parameterized microstructures. Our models
could potentially be utilized in applications such as the design of new materials
with specified or optimal effective properties, or to study uncertainties of addit-
ively manufactured materials due to variability of the manufacturing process.
The main contributions for first-order computational homogenization are:
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• The microscopic problem is formulated as a parameterized PDE, making
it amenable to compute material and geometry sensitivities for material
design.

• A data-driven non-intrusive reduced order model is established for hyper-
elastic microstructures, which in comparison to other existing methods is
more data efficient and allows the user to recover the microscopic stress
field.

• An intrusive reduced order model for elasto-plastic microstructures under
large deformations is developed that can handle a wide range of material
and geometry parameters.

• The results of both ROMs are compared to full FE2 solutions, highlighting
the accuracy and speed-up of the developed methodologies.

Building on ideas from first-order computational homogenization, we make the
following contributions for second-order computational homogenization:

• Same as for the first-order case, the microscopic problem is formulated as
a parameterized PDE.

• An intrusive reduced order model for the second-order parameterized
microscopic problem is developed, and a novel hyperreduction method is
proposed.

• Comparisons with the direct numerical simulation, where all microstruc-
tural features are resolved at the macroscopic scale, and the full second-
order CH solution are conducted, and demonstrate that the ROM achieves
high accuracy and speed-ups.

1.4 Outline

In Chapter 2, the formulation of first-order computational homogenization
is presented. Both macroscopic and microscopic problems are detailed, with
a particular focus on parameterization of the microstructure and including
a discussion on the derivation of effective quantities, numerical solution and
computational costs.

To accelerate the parameterized microscopic problem, a non-intrusive re-
duced order model is proposed in Chapter 3. By employing proper orthogonal
decomposition, Gaussian process regression, and geometrical transformations,
an effective constitutive model is learned which can fully replace the microscopic
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problem for many parameters. Numerical experiments are shown to validate
the method, and limitations of the method are discussed.

A different approach is followed in Chapter 4. By combining the reduced
basis method and the empirical cubature method, an intrusive reduced order
model is derived, which resolves the issues of the non-intrusive method. Nu-
merical examples, motivated by energy-absorbing metamaterials, are presented
to validate the method.

Chapter 5 extends the method proposed in Chapter 4 to second-order
computational homogenization. After briefly reviewing the second-order theory,
a reduced order model is proposed. It utilizes the reduced basis method and
a novel hyperreduction method, which is inspired by the empirical cubature
method and tailored specifically for the second-order problem. Comparing the
numerical solutions for several examples, obtained through the surrogate, full
second-order and direct numerical simulation models, illustrates the accuracy
and efficiency of the proposed model.

Concluding remarks and a summary are given in Chapter 6, together with
recommendations for future research.





Chapter 2

First-order computational
homogenization

The content of this chapter is based on the following publications:

• Guo, T., Rokoš, O., & Veroy, K. (2021). Learning constitutive models
from microstructural simulations via a non-intrusive reduced basis method.
Computer Methods in Applied Mechanics and Engineering, 384, 113924.

• Guo, T., Rokoš, O., & Veroy, K. (2024). A reduced order model for
geometrically parameterized two-scale simulations of elasto-plastic mi-
crostructures under large deformations. Computer Methods in Applied
Mechanics and Engineering, 418, 116467.

https://www.sciencedirect.com/science/article/pii/S0045782521002619
https://www.sciencedirect.com/science/article/pii/S0045782521002619
https://www.sciencedirect.com/science/article/pii/S0045782523005911
https://www.sciencedirect.com/science/article/pii/S0045782523005911
https://www.sciencedirect.com/science/article/pii/S0045782523005911
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This chapter presents the two-scale problem arising in first-order computational
homogenization. In the first part, see Section 2.1, the macroscopic problem
is reviewed. Kinematical quantities and the governing partial differential
equations are introduced, and details on the weak formulation and the numerical
solution are provided. The microscopic problem is presented in the second part,
see Section 2.2. Details on the governing equations, boundary conditions and
numerical solution are discussed as well. In contrary to the usual definition, the
microscopic problem is assumed to be parameterized, i.e., the microstructure
can have different material, geometrical or other parameters. This has the
advantage that efficient reduced order models can be constructed for a wide
range of parameters, which can be used for the design or optimization of
materials.

2.1 Macroscopic problem

Consider a solid body Ω ⊂ Rd, with d = 2, 3 the space dimension, that is
deformed under prescribed boundary conditions. Under the external forces,
each material point x ∈ Ω of the undeformed body is continuously displaced
with a displacement vector u(x). The deformation gradient, characterizing
local deformation in a close vicinity of that material point, can be defined as

F := I +∇xu, (2.1)

where I is the identity tensor. The boundary value problem (BVP) governing
the deformation is based on the (quasi-static) linear momentum balance and
described by the following set of equations,

∇x · P T + b = 0 on Ω, (2.2a)

Pn = t0 on ∂ΩN, and (2.2b)

u = u0 on ∂ΩD, (2.2c)

where P is the second-order first Piola-Kirchhoff (1PK) stress tensor, b are the
body forces, n is the outward normal on the surface of the body ∂Ω, t0 and
u0 are the prescribed traction and displacement, and ∂ΩN, ∂ΩD represent the
Neumann and Dirichlet boundaries with ∂ΩN ∪∂ΩD = ∂Ω and ∂ΩN ∩∂ΩD = ∅.

The stress tensor P is typically related to the deformation gradient F (or
its history) with a constitutive model, and thus depends on the displacement u.
For complicated materials or microstructures, finding a closed-form expression
relating the stress P and F , i.e., phenomenological constitutive law, is often
challenging or even impossible. In first-order computational homogenization,
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the relation is derived numerically by solving a microscopic problem, which will
be explained in depth in Section 2.2, and thus is based on first principles. For
the remainder of this section, the relation is assumed to be implicitly defined.

By multiplying Eq. (2.2a) with a test function δu ∈ (H1
0 (Ω))

d and applying
the divergence theorem, the weak form of Eq. (2.2) can be derived,

G(u) :=

∫
Ω
∇xδu : P (F )dx−

∫
Ω
b · δudx−

∫
∂ΩN

t0 · δudx = 0, (2.3)

Here, H1
0 (Ω) := {v ∈ H1(Ω) | v = 0 on ∂ΩD} and H1(Ω) is the Hilbert space

with square integrable functions and derivatives on Ω. For prescribed boundary
conditions, a solution u∗ ∈ V := {v ∈ (H1(Ω))d | v = u0 on ∂ΩD} is sought
that fulfills Eq. (2.3) for all test functions δu. As the constitutive model P (F )
is usually non-linear, the linearization of Eq. (2.3) in the direction ∆u around
the current deformation u is required, resulting in,

DG
∣∣
u
· (∆u) =

∫
Ω
∇xδu : A(F (u)) : ∇x∆udx, (2.4)

where A := ∇FP is the fourth-order material stiffness tensor.
To find a solution u∗ that fulfills Eq. (2.3), the Newton method is usually

employed. Starting from an initial guess u0 and Newton iteration m = 0, the
following linear system needs to be solved for ∆u (for a fixed current iterate
um), ∫

Ω
∇xδu : A(F (um)) : ∇x∆udx = −G(um, δu). (2.5)

After solving Eq. (2.5) for ∆u, the solution um and iteration number m are
incremented with um+1 = um +∆u and m = m+ 1, and the previous steps
are repeated until Eq. (2.3) is fulfilled (up to some user-defined tolerance). If
the starting value u0 is close to the true solution u∗, a quadratic convergence
behavior can be expected. However, if the initial guess is not good, the Newton
method might not converge. In that case, the boundary conditions are usually
applied gradually in multiple load steps or other techniques to stabilize the
iterative procedure are used.

Remark 2.1.1 Sometimes, it is helpful to compute a polar decomposition of
the deformation gradient F = RU with orthogonal rotation R and symmetric
positive-definite stretch tensor U . Due to the principle of material objectivity,
a constitutive model always fulfills the following property:

P (F ) = R(F )P (U(F )). (2.6)
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Since U is symmetric, it has fewer independent components as compared to
F . In subsequent chapters, where surrogate models for P are constructed, this
implies that the input space U for the surrogate model is reduced.

Remark 2.1.2 To solve the macroscopic problem, the problem in continuous
form of Eqs. (2.3)–(2.5) is typically discretized and solved with the standard
Galerkin finite element method (FEM). More details on the finite element
method and discretization of weak forms, can be found in [6].

2.2 Parameterized microscopic problem

In first-order computational homogenization, while the macroscopic problem
is governed by the standard linear momentum balance, the macroscopic con-
stitutive model (relating strains to stresses and stiffness) is replaced by a
microscopic partial differential equation (PDE) which is defined on a represent-
ative volume element (RVE) that captures the representative behavior of the
microstructure. By prescribing the macroscopic deformation gradient F (or
stretch tensor U ) at the microscale, the PDE can be solved and effective stress
and stiffness returned to the macroscopic solver, see Fig. 2.1. For applications
such as microstructure optimization, it is reasonable to additionally introduce
a parameterization of the RVE with design variables µ (geometry) and λ
(material) in order to compute relevant sensitivities. The microscopic PDE is
formulated below on a parameterized domain, as is usually the case in shape
optimization. For brevity, the dependence on the macroscopic coordinates is
omitted and a fixed macroscopic material point is assumed unless otherwise
specified.

Consider a family of domains Ωµ ⊂ Rd, parameterized by geometrical
parameters µ ∈ Pµ, with Pµ the parameter space of geometrical parameters,
and spanned by position vectors xµ ∈ Ωµ. For all µ, the outer boundaries and
topology of Ωµ are assumed to remain fixed (the outer boundaries of the RVE
domain are fixed while the shape of the interior geometry can change). As a
consequence, the volume |Ωµ| remains constant for all µ. Additionally, it is as-
sumed that there exists a parent domain Ωp := Ωµp with µp ∈ Pµ, which can be
transformed into any Ωµ with a transformation map Φµ : Ωp → Ωµ,xp 7→ xµ,
transformation gradient Fµ := ∇xpΦµ and dxµ = |detFµ| dxp. In Fig. 2.1,
an example parent domain with a circular inclusion Ωp is geometrically para-
meterized and mapped to two distinct parameterized domains with elliptical
inclusions, Ωµ1 and Ωµ2 .

By assuming scale separation between macro- and microscale, the micro-
scopic displacement field on the parameterized domain u(xµ) can be writ-
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Figure 2.1: Two-scale problem based on first-order homogenization. At every macroscopic
point, a microscopic simulation is defined through deformation gradient F , shape parameters
µ and material parameters λ, and solved to obtain an effective stress P and stiffness A.
For different macroscopic points, different parameterized microstructures can be considered
through µ and λ. As an example of a family of geometrically parameterized microstructures,
a parent domain with a circular inclusion Ωp (center), can be mapped onto parameterized
domains Ωµ1 (top left) and Ωµ2 (top right) with mappings Φµ1 and Φµ2 .

ten as the summation of a mean field u(xµ) and a fluctuation field w(xµ),
i.e., u(xµ) = u(xµ) + w(xµ). The mean field is fully specified through
u(xµ) := (F − I)xµ, where F ∈ PF is the macroscopic deformation gradient
tensor and PF the parameter space of macroscopic loads. The total deformation
gradient tensor F is defined as

F (w) := I +∇xµu = F +∇xµw. (2.7)

The governing microscopic PDE is given as

∇xµ · P T (F (w)) = 0 on Ωµ, (2.8)

where P denotes the microscopic first Piola-Kirchhoff (1PK) stress tensor. No
constitutive model is specified at this point, although we assume that the stress
P is a known non-linear function of the deformation gradient F (or its history)
and contains material parameters λ ∈ Pλ with Pλ the material parameter space
A list of constitutive models considered in this work is provided in Appendix A.
The weak form of the problem is then: given (F ,λ,µ) ∈ P := PF ⊗ Pλ ⊗ Pµ,
find the fluctuation field w∗ ∈ V that fulfills

G(w) :=

∫
Ωµ

∇xµδw : P
(
F +∇xµw

)
dxµ !

= 0, ∀δw ∈ V, (2.9)



18 Chapter 2. First-order computational homogenization

where the integral bounds depend on the parameters µ and δw denotes a test
function. From Eq. (2.9), it is apparent that the macroscopic deformation
gradient F represents the external loading, while the fluctuation displacement
field w balances the system. The definition of the function space V depends on
the boundary conditions, which will be discussed in Section 2.2.2. However, it
is assumed that V ⊂ (H1(Ωµ))d and equipped with the inner product,

(u,v)V :=

∫
Ωµ

(u · v +∇xµu : ∇xµv) dxµ, (2.10)

and induced norm ||u||V =
√
(u,u)V .

With the aid of the parametric transformation map Φµ, see Fig. 2.1, and
using integration by substitution, the problem of Eq. (2.9) can be simplified
and restated on the parent domain Ωp as follows: given (F ,λ,µ) ∈ P, find
w∗p ∈ Vp ⊂ (H1(Ωp))d that fulfills for all δwp ∈ Vp,

Gp(wp) :=

∫
Ωp

(
(∇xpδwp)F−1

µ

)
: P p(F p) |detFµ| dxp = 0,

F p(wp) := F + (∇xpwp)F−1
µ ,

(2.11)

with the transformation gradient Fµ := ∇xpΦµ and dxµ = |detFµ| dxp. The
superscript p is used to denote quantities pertinent to the parent domain, e.g.,
w(xµ) = (w ◦Φµ)(x

p) = wp(xp), P (xµ) = P p(xp). To iteratively solve the
non-linear problem in Eq. (2.11), a linearization using the Gateaux derivative
around the current state wp in direction ∆wp ∈ Vp is required and can be
written as,

DGp|wp · (∆wp)

=

∫
Ωp

(
(∇xpδwp)F−1

µ

)
: Ap(F p) :

(
(∇xp∆wp)F−1

µ

)
|detFµ| dxp,

(2.12)

where Ap is a fourth-order tensor obtained by transforming the material stiffness
tensor A := ∇FP from the parameterized to the parent domain. Similarly to
the macroscopic problem, the solution can be found using the Newton method,
cf. Eq. (2.5). More details are provided in Section 2.2.3.

To summarize, once the transformation map Φµ is known, the geometrically
parameterized microscopic problem Eq. (2.9) can be solved on the parent
domain using Eqs. (2.11) and (2.12). In general, such transformations are not
known analytically, but are instead computed numerically. Various methods to
compute such maps exist, such as

• free form deformation [120, 139],
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• radial basis functions [83, 126],

• registration method [130], and

• mesh-based methods [31, 146, 134].

Further details on how to find these transformations efficiently and especially
in the context of reduced order modeling are presented in Section 3.1.1.

2.2.1 Effective quantities

For conciseness of notation, the following abbreviations are introduced to denote
quantities evaluated at the solution w∗p:

F ∗p := F + (∇xpw∗p)F−1
µ , (2.13)

P ∗p := P p(F ∗p), (2.14)
A∗p := Ap(F ∗p). (2.15)

Upon obtaining solution w∗p that fulfills Eq. (2.11), the effective stress is
computed through standard volume averaging as

P := |Ωµ|−1

∫
Ωµ

P ∗dxµ

= |Ωp|−1

∫
Ωp

P ∗p|detFµ|dxp,

(2.16)

and the effective stiffness (in index notation) as

Aijkl :=
∂P ij

∂F kl

= |Ωp|−1 ∂

∂F kl

∫
Ωp

P ∗p
ij |detFµ|dxp

= |Ωp|−1

∫
Ωp

A∗p
ijmn

∂F ∗p
mn

∂F kl

|detFµ|dxp,

(2.17)

with

∂F ∗p
mn

∂F kl

= δmkδnl +
∂

∂F kl

(
∂w∗p

m

∂xp
r

)(
F−1
µ

)
rn

, (2.18)

where δmk denotes the Kronecker delta. To determine
∂

∂F kl

(
∂w∗p

m

∂xp
r

)
, Eq. (2.11)

is differentiated with respect to F to form linear tangent problems that can
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be solved. For one particular component F kl (where the indices k and l are
assumed to be temporarily fixed), the differentiation yields∫

Ωp

(
(∇xpδwp)F−1

µ

)
: A∗p :

(
Ekl + (∇xpqkl)F

−1
µ

)
|detFµ| dxp = 0,

(2.19)

where a new auxiliary vector field qkl :=
∂w∗p

∂F kl

∈ Vp has been defined (reflecting

the sensitivity of the microfluctuation field with respect to the change of the
applied macroscopic loading), and Ekl ∈ Rd×d is a second order tensor with all
entries zero, except for the kl-th entry which is 1. Eq. (2.19) can be rearranged
as, ∫

Ωp

(
(∇xpδwp)F−1

µ

)
: A∗p :

(
(∇xpqkl)F

−1
µ

)
|detFµ| dxp

=−
(∫

Ωp

(
(∇xpδwp)F−1

µ

)
: A∗p |detFµ| dxp

)
: Ekl.

(2.20)

The linear tangent problem in Eq. (2.20) is then solved for all combinations
k, l = 1, ..., d to obtain qkl for each component of F .

Although not explicitly utilized in this work, the sensitivities of the effective
stress P with respect to the geometrical parameters µ, which are required for
applications such as shape optimization, can be computed with the geometrically
parameterized formulation of the RVE as follows (in index notation),

∂P ij

∂µk
= |Ωp|−1 ∂

∂µk

∫
Ωp

P ∗p
ij |detFµ|dxp

= |Ωp|−1

∫
Ωp

(
A∗p
ijmn

∂F ∗p
mn

∂µk
|detFµ|+ P ∗p

ij

∂|detFµ|
∂µk

)
dxp,

(2.21)

with

∂F ∗p
mn

∂µk
=

∂

∂µk

(
∂w∗p

m

∂xp
r

)(
F−1
µ

)
rn

+
∂w∗p

m

∂xp
r

∂
(
F−1
µ

)
rn

∂µk
. (2.22)

The integrand is complicated due to the derivatives of F−1
µ and | detFµ|, but,

in principle, these derivatives can be computed for a given geometrical mapping
Φµ. Analogously, the sensitivities of the effective stress P with respect to the
material parameters λ could be computed with,

∂P ij

∂λk
= |Ωp|−1 ∂

∂λk

∫
Ωp

P ∗p
ij |detFµ|dxp

= |Ωp|−1

∫
Ωp

(
A∗p
ijmn

∂F ∗p
mn

∂λk
+

∂P ∗p
ij

∂λk

)
|detFµ|dxp,

(2.23)
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with

∂F ∗p
mn

∂λk
=

∂

∂λk

(
∂w∗p

m

∂xp
r

)(
F−1
µ

)
rn

. (2.24)

For practical reasons, if the effective stress P can be assumed to vary smoothly
with the parameters µ and λ, finite differences could be used to approximate
these sensitivities.

2.2.2 Scale coupling and boundary conditions

To ensure a proper physical coupling of macro- and microscale, the so-called
Hill-Mandel Condition [54] must be fulfilled, which states that the averaged
microscopic virtual work has to be equal to the macroscopic virtual work, i.e.,

|Ωµ|−1

∫
Ωµ

P : δF dxµ = P : δF , (2.25)

Furthermore, the average of the microscopic deformation gradient is typically
forced to be equal to the applied macroscopic deformation gradient, i.e.,

|Ωµ|−1

∫
Ωµ

F dxµ = F . (2.26)

It has been shown in, e.g., [119], that by prescribing specific boundary conditions
for the fluctuation field w, both conditions in Eqs. (2.25) and (2.26) are always
fulfilled. Two frequently employed ones are the kinematic boundary conditions
(KBC) and periodic boundary conditions (PBC) with,

(KBC) w = 0 on ∂Ωµ, (2.27)
(PBC) w periodic on ∂Ωµ. (2.28)

The corresponding function spaces are then

(KBC) V := {v ∈ (H1(Ωµ))d | v = 0 on ∂Ωµ}, (2.29)

(PBC) V := {v ∈ (H1(Ωµ))d | v periodic on ∂Ωµ}, (2.30)

or on the parent domain

(KBC) Vp := {v ∈ (H1(Ωp))d | v = 0 on ∂Ωp}, (2.31)

(PBC) Vp := {v ∈ (H1(Ωp))d | v periodic on ∂Ωp}. (2.32)

For most examples considered in this thesis, PBC are utilized, since they have
shown empirically to provide a good estimate for effective quantities, while
KBC often predict an overly stiff behavior [127, 62].
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Remark 2.2.1 Periodic boundary conditions are typically enforced through
two methods: Lagrange multipliers [88] or static condensation [71]. While the
former method is easier to implement, it leads to a saddle point structure and
a slightly larger system due to additional constraints that enforce the periodic
boundary conditions. The latter method is more difficult to implement, but the
resulting global stiffness matrix is symmetric positive definite. In this work, we
employ static condensation to enforce periodic boundary conditions.

2.2.3 Discretization and numerical solution

By following a standard Galerkin finite element discretization, the microscopic
problem in Eqs. (2.11) and (2.12) can be solved. With wp ≈ wp

h ∈ V
p
h ⊂ Vp,

with dimVph = N , the number of degrees of freedom of the dicretization, the
internal force vector f ∈ RN and global stiffness matrix K ∈ RN×N can be
derived from Eqs. (2.11) and (2.12), resulting in the following non-linear system
of equations

f(w) = 0, (2.33)

where w ∈ RN is the column matrix of unknown coefficients of the discretized
fluctuation field. To find the solution w of Eq. (2.33), the Newton method can
be employed, cf. Eq. (2.5). Starting from a starting vector w0 and Newton
iteration number m = 0, compute for m = 1, . . . ,

K(wm)∆w = −f(wm),

wm+1 = wm +∆w,
(2.34)

until ||f(wm)||2 ≤ εnewton with εnewton a user-defined tolerance.

2.2.4 Computational costs

There are several aspects of the microscopic problem that make it computa-
tionally expensive:

1. Since typically, realistic microstructures contain fine geometrical features
requiring fine meshes to capture their RVE geometry, the dimension
of the solution space N becomes large. The solution of the linear sys-
tem of equations in Eq. (2.34) scales with O(N 2) – O(N 3), making it
computationally expensive for large N .

2. In every Newton iteration, it is necessary to assemble the global force
vector f(w) and stiffness matrix K(w). This procedure scales linearly
with the number of elements and Gauss points, thus, becoming expensive
for fine meshes.
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3. To compute the effective stiffness, it is necessary to solve several linear
tangent problems in Eq. (2.20), which again scales with O(N 2) – O(N 3).





Chapter 3

A non-intrusive reduced order
model for first-order
computational homogenization

The content of this chapter is based on the following publications:

• Guo, T., Rokoš, O., & Veroy, K. (2021). Learning constitutive models
from microstructural simulations via a non-intrusive reduced basis method.
Computer Methods in Applied Mechanics and Engineering, 384, 113924.

• Guo, T., Silva, F.A.B., Rokoš, O., & Veroy, K. (2022). Learning con-
stitutive models from microstructural simulations via a non-intrusive
reduced basis method: Extension to geometrical parameterizations. Com-
puter Methods in Applied Mechanics and Engineering, 401, 115636.

https://www.sciencedirect.com/science/article/pii/S0045782521002619
https://www.sciencedirect.com/science/article/pii/S0045782521002619
https://www.sciencedirect.com/science/article/pii/S0045782522005916?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0045782522005916?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0045782522005916?via%3Dihub
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The two-scale problem arising in first-order computational homogenization, as
presented in Chapter 2, is often discretized and solved using the finite element
method (FEM) on both scales, leading to a nested FE scheme, also known as
FE2. Although accurate for problems where scale separation of the micro- and
macroscale can be assumed, the FE2 method tends to be computationally very
expensive, since the microscopic problem needs to be solved at every quadrature
point of the macroscopic problem. In multi-query contexts such as optimization
or material design, it is therefore necessary to accelerate the solution of the
microscopic problem.

As already discussed in Section 1.2.1, several non-intrusive methods have
been developed to accelerate and accurately approximate the microscopic
problem. However, such methods typically require large datasets and focus only
on the effective quantities, while neglecting the microscopic physics, making
the interpretation of the predictions more difficult. In this chapter, we derive a
surrogate model for the microscopic problem that accounts for the microscopic
physics with the following key features: (1) the evaluation of the effective
quantities (stress and stiffness) is fast and accurate, (2) the stress field for all
geometries can be recovered and automatically fulfill the microscopic balance
laws and periodicity, (3) the method is non-intrusive, and (4) the sensitivities
are available and can be readily used for optimization and material design.

To emphasize that a quantity depends on coordinates xp and/or input
parameters (F ,λ,µ), the dependencies are stated explicitly in this chapter.
To distinguish coordinates and parameters, a semicolon is employed, e.g.,
P p(xp;F ,λ,µ).

3.1 Surrogate modeling

To lower the computational cost of the microscopic problem, we approximate
the microscopic problem using a data-driven non-intrusive reduced order model,
constructed by proper orthogonal decomposition (POD) and Gaussian process
regression (GPR). Similar methods were proposed in the literature to construct
non-intrusive reduced order models for the displacement or strain field, see,
e.g., [45, 64, 21, 129]. The proposed method differs from these works in that
the non-intrusive reduced order model is constructed directly for the stress
field P . As seen in Fig. 2.1, both displacement and strain are not required by
the macroscopic solver. If the displacement or strain was predicted, the stresses
would still have to be calculated, which means that the microscopic constitutive
law has to be implemented anew, negating the advantages of a non-intrusive
method. Furthermore, depending on the material model the evaluation might
be costly and can compromise the online speed-up significantly. It is also not
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obvious how one would derive the effective stiffness for that case. On the
other hand, reducing the stresses directly circumvents the above-mentioned
disadvantages, and both the effective stress and stiffness can be rapidly obtained.

Another key difference here is that we consider geometrical parameters in
our work. To treat different geometries, it is essential to define a parent domain
and to transform all snapshots onto that domain. To find such transformations,
we first present in this section a surface-based deformation method for finding
such geometrical transformations by solving an auxiliary problem based on
linear elasticity, which can be rapidly solved. Hereafter, we show how to
construct the surrogate model and replace the microscopic simulation.

3.1.1 Transformation of snapshots

When simulating different geometries of the microstructure with independent
simulation meshes, the obtained snapshots will be incompatible as the field
variable is only known at different discrete points. To apply POD on such a set
of snapshots, one would first need to interpolate each snapshot onto the same
underlying grid of discrete points, leading to additional interpolation errors. To
circumvent this, it is common to introduce a parent domain, and to transform
each simulation snapshot onto the parent domain.

In general, such transformations are not known analytically, but obtained
by solving an auxiliary problem. In the context of reduced order modeling,
many existing works obtain geometrical transformations with space deformation
techniques, such as free form deformation [120] or radial basis functions [101],
see, e.g., [116, 115, 95, 83, 139, 25]. The biggest advantage of these methods
is that the computational costs of computing the transformation map only
scale with a pre-defined number of control points and is independent of the
original simulation mesh, thus allowing for an efficient solution. However,
numerous control points might be required to describe complicated geometries
or to enforce certain parts of the domain to remain fixed. For our specific
parameterized microscopic problem, as defined in Section 2.2, it is important
to keep the outer boundaries fixed.

Another approach to obtain such transformations are surface-based deform-
ation techniques, where an auxiliary diffusion-type PDE problem is posed and
solved on the simulation mesh of the original problem. Hence, the transforma-
tion map has exactly the same flexibility as the solution field in the original
simulation. Furthermore, one can ensure by construction that the obtained
transformation is a bijective map. Lastly, enforcing certain parts to remain
fixed is straightforward by prescribing conditions on these parts, making the
surface-based deformation techniques more favorable for our use case. Below,
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we directly employ zero Dirichlet boundary conditions to fix the RVE boundar-
ies, since RVE size and topology will always remain fixed while the internal
microstructure will be subject to change.

We propose to find the transformations by solving an auxiliary problem
based on linear elasticity, which is closely related to techniques presented in
[146, 59, 31, 16]. Even though the auxiliary problem formulated this way is
more expensive to solve than the one arising from space deformation techniques,
the solution can be substantially accelerated with standard reduced basis (RB)
methods, as shown below.

The main idea is as follows: for any geometrical parameterization, the
movement of certain parts of the geometry is known, while other parts are fixed.
This movement can be prescribed onto a parent mesh and then an auxiliary
problem solved to obtain the transformation map for all geometrical parameters.
The example below illustrates this approach.

2D RVE with elliptical inclusion Consider an RVE defined on Ωµ =
[0, 1]2 consisting of a parameterized elliptical inclusion embedded in a homo-
geneous matrix, see Fig. 3.1. The major and minor axes of the inclusion are
parameterized. Assuming a parent domain Ωp with a given circular inclusion,
it can be deformed into any of the parameterized domains Ωµ, by moving the
points on the circular interface into the shape of the elliptical inclusion while
keeping the outer boundaries fixed. By defining this transformation map as

Φµ : Ωp → Ωµ,xp 7→ xµ = Φµ(x
p) = xp + d(xp;µ) (3.1)

with d the transformation displacement, this can now be translated into the
following linear elasticity auxiliary problem:

∇xp ·
(
Caux :

1

2

(
∇xpd+ (∇xpd)T

))
= 0 in Ωp, (3.2a)

d = 0 on ∂Ωp, (3.2b)
d = xµ(xp)− xp on ∂Ωp

int, (3.2c)

where ∂Ωp = ∂Ωp
L ∪ ∂Ωp

R ∪ ∂Ωp
B ∪ ∂Ωp

T denotes the union of the left, right,
bottom and top RVE boundaries, and xµ(xp) is known for all points on the
parent interface ∂Ωp

int. The elasticity tensor Caux is assumed to be constant
throughout the whole domain, assumed in the form of Hooke’s law, and specified
by the Young’s modulus Eaux and Poisson’s ratio ξaux. Since the problem is
cast in a purely geometric manner, the Young’s modulus has no influence on
the transformation map, as it only changes the magnitude of the stresses that
are of no interest here. The Poisson’s ratio ξaux changes the compressibility
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Figure 3.1: Definition of parent and parameterized domain. The transformation
map Φµ maps from the parent Ωp to the parameterized Ωµ domain. The transformation
displacement d(xp;µ) on the boundaries is fixed. The points on both the parent ∂Ωp

int and
parameterized interface ∂Ωµ

int are known and used to prescribe the transformation along the
interface. As an example, the indicated point xp in the parent domain is displaced onto the
indicated point xµ in the parameterized domain.

of the material, hence affecting the transformation, and its influence on the
approximation will be investigated in Section 3.3. The boundary condition
in Eq. (3.2b) is chosen such that the parameterized domain Φµ(Ω

p) = [0, 1]2 re-
mains the same, i.e., covers the parent domain Ωp. This also means that the
transformation preserves the volume, i.e., |Ωp| = |Φµ(Ω

p)|. Moreover, this way
a periodic quantity remains periodic after transformation. Finally, Eq. (3.2c)
prescribes the transformation displacements along the interface to deform the
circle into an ellipse.

Remark 3.1.1 In principle, one could replace Eq. (3.2b) with periodic boundary
conditions and fix the RVE at the corner points only to allow for more flexible
transformations. However, the added complexity did not yield any significant
improvement in accuracy in our test problems.

Discretizing the auxiliary problem in Eq. (3.2) with FE yields a linear system
of equations

Ad = b(µ), (3.3)

where the size of A, d and b(µ) scale with the full mesh dimensionality N and
Eq. (3.3) needs to be solved for many right-hand sides (one for each geometry),
where each solution is typically computationally expensive. However, there are
several ways to accelerate the solution: since the stiffness matrix A does not
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depend on the parameters µ and is symmetric positive definite, for moderate
values of N , a Cholesky decomposition A = LLT can be computed once and
then a forward and backward substitution can be used to solve Eq. (3.3) for
any b(µ). For even larger values of N , the reduced basis method [103, 52]
can be used: with a proper orthogonal decomposition (POD) a reduced basis
for the transformation displacement can be found with d = Vd̂ with V ∈
RN×N and dim(d̂) = N ≪ N and the reduced system is obtained via a Galerkin
projection, i.e.,

VTAVd̂ = VTb(µ),

⇒ Âd̂ = VTb(µ),
(3.4)

where the reduced stiffness matrix Â := VTAV only needs to be computed once.
In Section 3.3, it will be shown that N is equal to the number of geometrical
parameters µ. However, as pointed out in [126], the term on the right hand
side VTb(µ) is in general not affinely decomposable, meaning that for each new
value of µ, a matrix-vector product VTb(µ) must be computed which depends
linearly on the full problem size O(N ). If this is prohibitive, then an empirical
interpolation method [5, 23] could be used to approximate b(µ) and then the
complexity of the solution of the auxiliary problem becomes independent of N .

After solving Eq. (3.3) for a given µ, d(xp;µ) is known at every grid point
of the parent mesh and hence the map Φµ is obtained. To transform the
original snapshots P (xµ;F ,λ,µ), computed on the parameterized domain Ωµ,
onto the parent domain P p(xp;F ,λ,µ), they have to be evaluated at the
transformed parent coordinates, i.e.,

P p(xp;F ,λ,µ) := P (Φµ(x
p);F ,λ,µ) = P (xµ;F ,λ,µ), ∀xp ∈ Ωp. (3.5)

Remark 3.1.2 If the original snapshot P (xµ;F ,λ,µ) is obtained on an inde-
pendent mesh, one needs to interpolate it onto the transformed parent coordin-
ates Φµ(x

p). However, this interpolation can introduce non-physical effects, i.e.,
periodicity and/or balance of linear momentum might not be fulfilled anymore.
To ensure a physical transformation and avoid interpolation errors, we solve the
auxiliary problem in Eq. (3.2) to generate simulation meshes for each geometry
Ωµ (by adding the transformation displacement d(xp;µ) to each node of Ωp)
and solve the physical simulation in Eq. (2.9). Equivalently, one could compute
the transformation gradient Fµ and solve the physical simulation directly on the
parent domain using Eqs. (2.11) and (2.12).
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3.1.2 Proper orthogonal decomposition

After solving the microscopic problem for different input parameter combin-
ations {F (i),λ(i),µ(i)}Npod

i=1 , stress snapshots {P p(xp;F (i),λ(i),µ(i))}Npod

i=1 are
obtained on the parent domain that each fulfill the balance of linear momentum
in Eq. (2.11). Here, Npod denotes the number of snapshots. Each stress snapshot
is typically defined on the quadrature points and P p(xp;F ,λ,µ) ∈ L2(Ωp),
with L2(Ωp) the space of square integrable functions on Ωp.

With the available snapshots, the goal is to learn an effective constitutive
law, i.e., (F ,λ,µ) 7→ (P ,A), that is not only fast to evaluate and accurate,
but it is also possible to recover the microscopic stress fields. Furthermore,
the predicted fields should always fulfill the microscopic balance laws and
periodicity. To achieve that, first the weak form in Eq. (2.11) is rewritten with,∫

Ωp

(
(∇xpδwp)F−1

µ

)
: P p(xp;F ,λ,µ) |detFµ| dxp = 0,

⇔
∫
Ωp

(∇xpδwp) :
(
P p(xp;F ,λ,µ)F−T

µ |detFµ|
)
dxp = 0,

⇔
∫
Ωp

(∇xpδwp) : W p(xp;F ,λ,µ)dxp = 0,

(3.6)

where the weighted stress W p(xp;F ,λ,µ) := P p(xp;F ,λ,µ)F−T
µ |detFµ| is

defined. By employing a proper orthogonal decomposition (POD) on the
available weighted stress snapshots (obtained by multiplying the stress snap-
shots with F−T

µ(i) | detFµ(i) |), the weighted stress is approximated as a linear
combination of constant global basis functions Bl(x

p) ∈ L2(Ωp) with parameter-
dependent coefficients αl(F ,λ,µ) ∈ R,

W p(xp;F ,λ,µ) ≈
L∑
l=1

αl(F ,λ,µ)Bl(x
p), (3.7)

where L is the number of basis functions. The basis functions Bl are computed
as linear combinations of the Npod training snapshots, i.e.,

Bl(x
p) =

Npod∑
i=1

cilW
p(xp;F (i),λ(i),µ(i)), (3.8)

where cil are coefficients determined by POD. The algorithm employed to
compute POD is provided in Appendix B. Additionally, the basis functions are
orthonormal with respect to L2(Ωp), i.e.,

(Bi,Bj)L2(Ωp) :=

∫
Ωp

Bi(x
p) : Bj(x

p)dxp = δij , (3.9)
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and periodic, as they are computed from a linear combination of periodic
weighted stress fields. Inserting Eqs. (3.7) and (3.8) in Eq. (3.6) yields,∫

Ωp
(∇xpδwp) : W p(xp;F ,λ,µ)dxp

≈
L∑
l=1

αl(F ,λ,µ)

∫
Ωp

(∇xpδwp) : Bl(x
p)dxp

=

L∑
l=1

αl(F ,λ,µ)

Npod∑
i=1

cil

∫
Ωp

(∇xpδwp) : W p(xp;F (i),λ(i),µ(i))dxp︸ ︷︷ ︸
=0, since each snapshot fulfills Eq. (3.6)

= 0,

(3.10)

and shows that the balance equation will always be fulfilled with the POD basis.
This means that, independent of the coefficients αl(F ,λ,µ), the resulting field
will always fulfill the balance of linear momentum in Eq. (2.11).

Remark 3.1.3 As we do not have access to the microscopic displacement nor
the microscopic deformation gradient, it is not possible to verify the Hill-Mandel
condition in Eq. (2.25) or that the averaged microscopic deformation gradient
is equal to the applied macroscopic deformation gradient, see Eq. (2.26).

Effective quantities Assuming for now that we have a way of finding
the coefficients αl(F ,λ,µ), the effective stress can be computed from the
approximated weighted stress in Eq. (3.7). In Eq. (2.16), the effective stress is
defined as

P (F ,λ,µ) = |Ωp|−1

∫
Ωp

P p(xp;F ,λ,µ) |detFµ| dxp. (3.11)

By rearranging the definition of the weighted stress with

W p(xp;F ,λ,µ) = P p(xp;F ,λ,µ)F−T
µ |detFµ| ,

⇔ P p(xp;F ,λ,µ) = W p(xp;F ,λ,µ)F T
µ |detFµ|−1 ,

(3.12)

and inserting together with Eq. (3.7) in Eq. (3.11) yields

P (F ,λ,µ) = |Ωp|−1

∫
Ωp

W p(xp;F ,λ,µ)F T
µ dxp

≈ |Ωp|−1

∫
Ωp

(
L∑
l=1

αl(F ,λ,µ)Bl(x
p)

)
F T
µ dxp

= |Ωp|−1
L∑
l=1

αl(F ,λ,µ)

∫
Ωp

Bl(x
p)F T

µ dxp.

(3.13)
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In order to have a rapid online phase, the integrals in Eq. (3.13) must be
precomputed in the offline stage. Due to the specific form of the basis func-
tions Bl, Eq. (3.8), it can be shown that the integrals in Eq. (3.13) are invariant
with respect to F T

µ , i.e.,∫
Ωp

Bl(x
p)F T

µ dxp =

∫
Ωp

Bl(x
p)dxp, (3.14)

which can easily be precomputed since Bl is known; the proof of the identity
in Eq. (3.14) is provided in Appendix C. With

Bl := |Ωp|−1

∫
Ωp

Bl(x
p)dxp, (3.15)

the expression for the effective stress in Eq. (3.13) becomes

P (F ,λ,µ) =
L∑
l=1

αl(F ,λ,µ)Bl, (3.16)

Interestingly, the prediction of the effective stresses is completely independent
of the auxiliary problem. The auxiliary problem only needs to be computed in
order to recover the stress field from the predicted weighted stress field.

The effective constitutive stiffness and sensitivities with respect to material
and geometrical parameters are given as

A = ∇FP =

L∑
l=1

Bl ⊗∇Fαl, (3.17)

∇λP =

L∑
l=1

Bl ⊗∇λαl, (3.18)

∇µP =
L∑
l=1

Bl ⊗∇µαl. (3.19)

Remark 3.1.4 In general, the effective stiffness in Eq. (3.17) does not fulfill
major symmetries, i.e., Aijkl = Aklij. This means that the global stiffness
matrix of the macroscopic solver will be non-symmetric, which is a disadvantage
of the proposed method. In our considered two-scale examples, this did not cause
any problems.

3.1.3 Regression model

From Eqs. (3.16)–(3.19), it is clear that all effective quantities can be rapidly
predicted, when coefficients αl and their derivatives are known. These coef-
ficients can be approximated with regression models. However, the choice of
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the regression model depends on the type of microscopic material model. For
history-dependent material behavior, such as plasticity, the same input variables
might lead to different stress values (and, hence, coefficients), depending on
the previous state. To approximate such coefficients, a regression model that
contains internal state variables, such as recurrent neural networks, are required.
In this chapter, we focus on the hyperelastic and therefore history-independent
class of materials. These materials are characterized by a (poly-)convex strain
energy density function. Two hyperelastic material models are provided in Ap-
pendix A.1. Due to the convexity, each input corresponds to exactly one stress
and coefficient, and a wide range of regression techniques can be used, such
as radial basis functions [44], GPR [45, 64, 144] or neural networks [53]. A
comparison of different regression models in approximating the coefficients was
carried out in [10], revealing that GPRs can be as accurate as NNs, while being
easier to train. Apart from that, GPR offers some other advantages:

• It can reconstruct the training data perfectly, i.e., it reproduces the exact
solution at the training points.

• Depending on the chosen kernel, the regression function has a specified
smoothness and its derivatives can be obtained by closed-form expressions.

• The trained GPR model returns an uncertainty measure for each evalu-
ation, which can be used to estimate the regression error or to develop
an active learning scheme [76, 45, 64, 144].

Due to these advantages, in this work, we learn regression models for αl(F ,λ,µ)
with GPRs.

Data preparation For the regression, the training data that have been
collected for POD can be reused. However, as will be shown in Section 3.2,
more training data is in general required for an accurate regression model
than for an accurate POD basis. For that reason, it is assumed that we
have Nreg ≥ Npod weighted stress snapshots W p,(i) that are generated for
parameters (F (i),λ(i),µ(i)) with i = 1, 2, . . . , Nreg. The optimal projection (in
L2(Ωp) sense) of the i-th snapshot on the POD basis is given by

W p(xp;F (i),λ(i),µ(i)) ≈
L∑
l=1

(W p(xp;F (i),λ(i),µ(i)),Bl)L2(Ωp)Bl, (3.20)

and hence α
(i)
l = (W p(xp;F (i),λ(i),µ(i)),Bl)L2(Ωp) for l = 1, . . . , L. All coeffi-

cients for all snapshots α
(i)
l are collected together with the input data. Sub-

sequently, a mapping between the parameters and each coefficient is constructed
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independently with GPR, i.e.,

α̂l : P→ R, (F ,λ,µ)
GPR7→ α̂l(F ,λ,µ) ≈ αl(F ,λ,µ). (3.21)

Gaussian process regression For ease of notation, we assume for this
section that all inputs (F ,λ,µ) ∈ P are concatenated and written as one vector
of parameters X ∈ P̂ with P̂ the flattened parameter space.

Each coefficient α̂l(X) is assumed to be distributed as a Gaussian process
(GP) with a zero mean function and a symmetric semi-positive definite kernel kθ :
P̂× P̂→ R+, (X,X ′) 7→ kθ(X,X ′),

α̂l ∼ GP(0, kθ(X,X ′)). (3.22)

Here, R+ contains all positive real numbers and 0. The form of the ker-
nel kθ(X,X ′) is chosen by the user, and each kernel has hyperparameters θ that
are fitted to the training data. In this work, we use, same as in [45], the auto-
matic relevance determination (ARD) squared exponential kernel,

kθ(X,X ′) = σ2
f exp

(
−1

2

Nin∑
k=1

(Xk −X ′
k)

2

l2k

)
, (3.23)

where θ = [σf , l1, l2, . . . , lNin ] and Nin = dim P̂ is the total number of input
parameters.

By Bayesian inference and conditioning on the available training data
{X(i), αl(X

(i))}Nreg

i=1 , here compactly written as Xtr := [X(1), . . . ,X(Nreg)]T and
ytr := [αl(X

(i)), . . . , αl(X
(Nreg))]T , the posterior GP α̂∗

l at a testing point x is
given by

α̂∗
l (x)|(Xtr,ytr) ∼ GP(m∗(x), k∗(x,x′)), (3.24)

m∗(x) = yT
trK

−1
tr kθ(Xtr,x), (3.25)

k∗(x,x′) = kθ(x,x
′)− kθ(Xtr,x)

TK−1
tr kθ(Xtr,x

′), (3.26)

where Ktr := [kθ(X
(i),X(j))]

Nreg

i,j=1 ∈ RNreg×Nreg is a matrix that can be pre-
computed. The term kθ(Xtr,x) := [kθ(X

(1),x), . . . , kθ(X
(Nreg),x)]T needs to

be evaluated during the online phase. This way, for each testing input x a
Gaussian distribution N (m∗(x), k∗(x,x)) for the coefficient α̂∗

l can be obtained.
As the ARD kernel is infinitely smooth, the derivatives of α̂∗

l with respect to the
inputs exist and can be obtained through closed-form expressions. The optimal
hyperparameters θ are determined with a maximum likelihood estimation, as
presented in [110]. More information and a broad overview on GPRs can be
found in [110].
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After training a GPR for each coefficient independently, yielding in total L
GPR models, the surrogate model for the microscopic simulation is complete.
Given a testing input, the coefficients and their derivatives can be inferred, and
together with Eqs. (3.16)–(3.19), the effective quantities can be computed. The
proposed method will be refered to as PODGPR in the following.

Remark 3.1.5 The macroscopic balance of angular momentum states that

PF T = FP T (3.27)

has to be fulfilled for the effective 1PK stress P . Inserting Eq. (3.16) in Eq. (3.27)
yields

L∑
l=1

αlBlF
T =

L∑
l=1

αlFBT
l , (3.28)

which can be expanded into four scalar equations in 2D (9 equations in 3D),

L∑
l=1

αl(Bl,11F 11 +Bl,12F 12) =
L∑
l=1

αl(F 11Bl,11 + F 12Bl,12), (3.29)

L∑
l=1

αl(Bl,11F 21 +Bl,12F 22) =

L∑
l=1

αl(F 11Bl,21 + F 12Bl,22), (3.30)

L∑
l=1

αl(Bl,21F 11 +Bl,22F 12) =
L∑
l=1

αl(F 21Bl,11 + F 22Bl,12), (3.31)

L∑
l=1

αl(Bl,21F 21 +Bl,22F 22) =
L∑
l=1

αl(F 21Bl,21 + F 22Bl,22), (3.32)

that constrain the values that {αl}Ll=1 can take. It is clear that Eqs. (3.29)
and (3.32) are automatically fulfilled because individual terms on both sides are
equal, and that Eqs. (3.30) and (3.31) represent the same equation. Therefore,
the only equation that constrains the values of {αl}Ll=1 can be written as

L∑
l=1

αl(Bl,11F 21 +Bl,12F 22 − F 11Bl,21 − F 12Bl,22) = 0. (3.33)

Given a deformation gradient F , and by defining

γl(F ) := Bl,11F 21 +Bl,12F 22 − F 11Bl,21 − F 12Bl,22 (3.34)
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for l = 1, . . . , L, one obtains the following orthogonality constraint that has to
be fulfilled

α ⊥ γ, (3.35)

where α = [α1, . . . , αL]
T and γ = [γ1, . . . , γL]

T . For the 3D case, three ortho-
gonality constraints can be derived analogously.

When using GPRs to predict the coefficients α̂∗, these will in general not
fulfill Eq. (3.35). One can correct the coefficients by taking only the orthogonal
part, i.e.,

α⊥ = α̂∗ − α̂∗ · γ
γ · γ γ. (3.36)

Using α⊥ in Eq. (3.16), the balance of angular momentum in Eq. (3.27) is
fulfilled. The effective sensitivities defined in Eqs. (3.17)–(3.19) also need to
be corrected, and the equations are provided in Appendix D. In our numerical
examples, we predicted the effective stress with and without the correction and
obtained negligible differences.

Remark 3.1.6 The term k∗(x,x) in Eq. (3.26) acts as an uncertainty measure
for the prediction. It can be used as an indicator of the regression error or
to develop an adaptive sampling scheme. In this work, we do not utilize the
uncertainty measure, and it is therefore sufficient to evaluate only the mean
function to predict the coefficient α̂∗

l (x) = m∗(x).

Remark 3.1.7 As the matrix Ktr must be inverted for the prediction, the
computational cost of the online evaluation scales with the number of samples
via O(N3

reg). For large numbers of training data, the prediction can become
prohibitively expensive. For such cases, methods such as sparse GPs [105] have
been proposed.

Remark 3.1.8 For all GPR models, the Python library GPy [42] was used. To
solve the maximum likelihood estimation, the L-BFGS-B algorithm was used. In
the numerical tests, we did not encounter any problems during hyperparameter
tuning and the convergence of the L-BFGS-B algorithm was smooth.

3.1.4 Comparison to neural networks

After the pioneering works by Ghaboussi et al. [38, 39] and recent advances
in deep learning, many papers have used methods of deep learning to extract
a constitutive model from pairs of stress and deformation data by training a
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deep neural network (DNN), e.g. [56, 73, 40, 94, 142]. Frequently, their data is
generated by solving the microscopic simulation for different input parameters,
analogous to what is done in this work. However, one difference is that in this
work the (weighted) stress field is collected while the other works only collect
the averaged stress and dispose of the stress field. A brief comparison between
both approaches is given below:

1. Training: The DNN approach essentially performs a regression dir-
ectly on the stress and deformation data. This means that a mapping
from R3×3 → R3×3 (or R6 → R6 in the case where the stress and deform-
ation measures are symmetric) has to be learned. On the other hand, the
proposed method PODGPR first compresses the microscopic stress field
solutions into a few independent coefficients which are then learned, i.e.,
regression maps from R3×3 → R or R6 → R are learned.

2. Implementation: Both surrogate models, after they have been trained,
can be easily adopted into any simulation software as they are both
non-intrusive and therefore entirely independent of the software used to
solve the microscale simulation.

3. Evaluation: The DNN approach needs to compute one forward pass
through the neural network to get the effective stress for a given deforma-
tion. The effective stiffness can then be computed with one backward pass
with automatic differentiation. However, the microstructural stresses,
which are desirable for revealing local stress concentrations and design-
ing improved microstructures, cannot be obtained. In PODGPR, the
effective stress and stiffness can be computed with Eqs. (3.16) and (3.17),
but in addition the (weighted) stress field can also be fully recovered
with Eq. (3.7).

3.1.5 Offline–online decomposition

For convenience, the offline–online decomposition is summarized in Algorithm 1.
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Algorithm 1 Offline–online decomposition of the proposed PODGPR frame-
work with microstructures parameterized with external loading F , microstruc-
tural material parameters λ and geometrical features µ.
Offline Stage:
1: Define a parent domain Ωp and its finite element discretization.
2: Generate parameter samples {F (i),λ(i),µ(i)}Nreg

i=1 from a random distribu-
tion on P.

3: For each different set of geometrical parameters µ(i), solve the auxiliary
problem in Eq. (3.2) to obtain the transformation map Φµ(i) .

4: Run full RVE simulations to obtain stress snapshots P p(xp;F (i),λ(i),µ(i)).
5: Compute POD of weighted stress W p(xp;F (i),λ(i),µ(i)) on the parent

domain, cf. Eq. (3.7).
6: Project weighted stress snapshots onto POD basis and learn GPRs for the

POD coefficients.
7: Compute Bl using Eq. (3.15).

Online Stage:
1: Given a new parameter set (F ∗,λ∗,µ∗), evaluate α̂∗

l with trained GPRs.
2: Compute effective quantities with Eqs. (3.16)–(3.19).

3.2 Numerical examples for fixed geometry

In this section, the performance of PODGPR is demonstrated for a fixed
geometry, i.e., there is only a single geometrical parameters µ, Fµ = I and
transformations Φµ are identity maps, and the weighted stress W p is equivalent
to the stress P p. To illustrate the influence of the number of basis functions L,
number of samples used for the POD basis construction Npod, and number of
samples used for the regression Nreg, two single-scale examples with different
2D RVEs are presented. The third example involves a two-scale problem, in
which the results obtained with PODGPR are compared with the full FE2
solution.

All numerical examples are defined in 2D under plane strain conditions,
although the proposed methodology can easily be extended to 3D microstruc-
tures. All quantities are normalized and considered dimensionless. The RVEs
are assumed to be of size [0, 1]2. The polar decomposition (cf. Remark 2.1.1) is
employed to reduce the number of load parameters, and the surrogate model is
constructed for the stretch tensor U . All microscopic simulations are conducted
with the FE framework MOOSE [99].

To measure the accuracy of PODGPR on test data, the following relative
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error measure for the effective stress is defined:

εP :=

∥∥P truth − P PODGPR
∥∥
F∥∥P truth

∥∥
F

, (3.37)

where ∥•∥F denotes the Frobenius norm, P truth the effective stress from the
full FE simulation and P PODGPR the effective stress resulting from PODGPR.

For comparison, deep feedforward neural networks with different architec-
tures are also trained with the available deformation and stress data collected
from the RVE simulations. A brief introduction to feedforward neural networks
is provided in Appendix E. Regarding the network architecture, different neural
networks with Nh = 1 or 2 hidden layers with each Nn = 20 or 50 neurons are
tested. The input and output layers have Nin and 4 neurons. Apart from the
output layer, an ELU activation function is applied after each layer. Before
training, the inputs and stress data are normalized to [0, 1]. All networks are
trained with a mean squared error loss function, the Adam optimizer with a
learning rate of 1× 10−4 and a batch size of 32 for 10000 epochs. The training
is performed with the Python package PyTorch [98].

3.2.1 Porous material

The porous microstructure depicted in Fig. 3.2a is considered for the first
example, where the pores account for 14% of the total area. Four-node
quadrilateral elements with four quadrature points are employed for the FE
discretization. The matrix material is modeled as a Neo-Hookean mater-
ial with material parameters C1 = 1 and D1 = 1. The definition of the
material model is provided in Appendix A.1.1. Kinematic boundary con-
ditions for the microscopic fluctuation field (wp = 0 on the boundaries)
and macroscopic stretches of Uxx − 1, Uyy − 1, Uxy ∈ [−0.05, 0.05] are con-
sidered. Due to the geometry of the problem, such external deformations
lead to much higher local strains, see Fig. 3.2b for an exemplary deformation
for [Uxx, Uyy, Uxy] = [0.95, 0.95, 0.05]. If larger macroscopic loads were con-
sidered, some pores might close, requiring contact detection, which is outside the
scope of the developed methodology. In this example, material parameters λ are
fixed, hence this problem has Nin = 3 varying parameters, Uxx, Uyy, Uxy.

Data generation To investigate the number of pre-computations needed
for an accurate representation, a set of 500 training snapshots for training
PODGPR is sampled via a Sobol sequence sampling procedure, and another
set of 1000 test snapshots is generated randomly from a uniform distribution
to evaluate the accuracy of the surrogate model. It was observed in [11] that
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(a) (b)

Figure 3.2: a) The considered porous microstructure consists of a Neo-Hookean matrix ma-
terial with a volume ratio of 86%. The mesh consists of 6000 bilinear elements and 6293 nodes.
b) An exemplary local deformation gradient Fyx with [Uxx, Uyy, Uxy] = [0.95, 0.95, 0.05].
The yx-component ranges from [−0.2869, 0.4623] and is hence much larger than the prescribed
macroscopic deformation.

Sobol sequence sampling fills the parameter space more evenly as compared to
random sampling and leads to better results.

Eigenvalues The eigenvalues of the correlation matrix of the stress field
(cf. Eq. (B.2)) for different numbers of training snapshots Npod are plotted
in Fig. 3.3. For all cases, a quick decay is observed, indicating the reducibility
of the problem. The magnitude of the first three POD basis functions is plotted
in Fig. 3.4. It can be seen that the basis functions specifically capture the
stress concentrations around the pores. Subsequently, L = 20 basis functions
are considered which corresponds to an energy Epod of 99.9996% (see Eq. (B.4)
for the definition).

Influence of Npod and Nreg For L = 20 basis functions, combinations
of Npod ∈ {20, 50, 100, 200, 500} and Nreg ∈ {50, 100, 200, 300, 400, 500} are
used for PODGPR. All 1000 test data are evaluated and the resulting mean and
maximum error of the stresses are plotted in Fig. 3.5. It can be observed that
for all cases the mean error is below 0.1%. From Npod = 20 to Npod = 50, a
significant improvement in the error can be observed. However, for Npod > 50,
the error only changes marginally. As Nreg is increased, more data becomes
available for the regression and therefore the mapping in Eq. (3.21) becomes
increasingly more accurate. Nevertheless, even using only 50 snapshots for both
basis and regression yields a mean error of less than 0.1% and a maximum error
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Figure 3.3: Eigenvalues of the correlation matrix for different numbers of snap-
shots Npod used for POD.

(a) 1st basis function (b) 2nd basis function (c) 3rd basis function

Figure 3.4: Von Mises stress of the first three POD basis functions of the microscopic stress
field.

of roughly 0.65%.

Influence of L Using Npod = Nreg = 50, the influence of the number of basis
functions L is then investigated. The relative errors of the effective stress are
given in Fig. 3.6. In addition, the projection error, computed by projecting the
true stress field onto the POD basis, is also plotted to compare the quality of
the regression in Eq. (3.21). The projection error can be interpreted as a lower
bound for the accuracy of PODGPR, for the case when the regression error
is zero. As seen in Fig. 3.6, both the mean and maximum error of the first 8
basis functions nearly perfectly match. However, for a larger number of basis
functions, the discrepancy slowly grows and the error flattens. Generally, the
POD coefficients get increasingly more oscillatory with increasing L and hence
require more data for an accurate regression. To show that with increasing Nreg,
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Figure 3.5: Comparison of stress errors for different combinations of Npod and Nreg for L =
20.

6 8 10 12 14 16 18 20
L

10−4

10−3

10−2

M
ea

n
E

rr
or

Projection error

PODGPR error

6 8 10 12 14 16 18 20
L

10−3

10−2

M
ax

E
rr

or

Projection error

PODGPR error

Figure 3.6: Comparison of stress errors for different L with Npod = Nreg = 50.

the regression error decreases and approaches the projection error, the error
over L for Npod = 50 with Nreg = 500 is also plotted in Fig. 3.7. For this case,
the mean error matches the projection error for 13 basis functions, while the
maximum error also gets much closer to the projection error. Note that the
maximum error of PODGPR is sometimes slightly lower than the projection
error. This can be explained with errors in the regression that lead to a stress
field which after averaging ends up closer to the high fidelity solution than the
best projection. This is entirely random and as Nreg is further increased, the
regression error will tend towards zero and the curves will match eventually.

Comparison with neural networks All available Nreg = 500 training
snapshots and all 1000 test snapshots are set as training and validation dataset
for training different neural networks, as described in the introduction of this
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Figure 3.7: Comparison of stress errors for different L with Npod = 50 and Nreg = 500.

Table 3.1: Validation and effective stress error for different feedforward neural network
architectures. The lowest values in each column have been highlighted.

Architecture Validation Loss εmean
P

εmax
P

Nh = 1, Nn = 20 2.33× 10−7 0.0016 0.0199
Nh = 1, Nn = 50 1.72× 10−7 0.0017 0.0136
Nh = 2, Nn = 20 2.4× 10−7 0.0019 0.0184
Nh = 2, Nn = 50 1.94× 10−7 0.0018 0.0166

section. The validation loss (computed as the mean squared error on the testing
snapshots after training) and relative errors εP obtained for each architecture are
given in Table 3.1, where the best architecture is highlighted. All architectures
produce similar results, with the second architecture Nh = 1, Nn = 50 yielding
the best results with an average and maximum error of 0.17% and 1.36%. On
the other hand, PODGPR already yields a lower mean and maximum error of
around 0.065% and 0.65% when using only 50 training data points, showing
that PODGPR can utilize the information of each snapshot more efficiently
than the neural network. When 500 snapshots are used for the regression in
PODGPR, a mean and max error of less than 0.02% and 0.2% is achieved,
hence outperforming the neural network.

3.2.2 Fiber reinforced material

In the second example, the considered microstructural RVE consists of two
different phases: a soft matrix and a stiff fiber material. Both materials are
Neo-Hookean (see Appendix A.1.1 for the definition), but the matrix has
parameters C1 = 1, D1 = 1, whereas the fiber has variable parameters C1 =
D1 ∈ [50, 150], corresponding to a Young’s modulus that is 50–150 times
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Figure 3.8: The considered microstructure consisting of a Neo-Hookean matrix material
and a Neo-Hookean fiber material. The fiber volume fraction is 12.56%. The mesh consists
of 4321 eight-node elements and 13080 nodes.

higher than the matrix, with the Poisson’s ratio remaining the same (ν = 0.25),
cf. Eq. (A.4). The geometry used is depicted in Fig. 3.8, where the matrix (blue)
completely surrounds the fiber (orange). Eight node quadrilateral elements
with four quadrature points are employed. The volume fraction of the fiber
is 12.56%. Kinematic boundary conditions (defined in Section 2.2.2), Uxx −
1, Uyy−1, Uxy−1 ∈ [−0.3, 0.3] and fiber parameters of C1 = D1 ∈ [50, 150] are
considered. Therefore, the considered problem has Nin = 4 varying parameters.

Data generation A set of 1000 training snapshots and another set of 1000
test snapshots are generated. The first set contains the 24 = 16 corner points
of the parameter domain and the remaining points are sampled from a Sobol
sequence, while the second set is generated from a random uniform distribution.

Eigenvalues The eigenvalues of the correlation matrix (cf. Eq. (B.2)) for
different numbers of training snapshots are plotted in Fig. 3.9. Similar to
the last example, for all cases, a quick decay can be observed, showing the
reducibility of the problem. The magnitude of the stress of the first three POD
basis functions are plotted in Fig. 3.10. Subsequently, L = 20 basis functions
are considered which correspond to an energy Epod of 99.9901% (see Eq. (B.4)
for the definition).

Influence of Npod and Nreg For L = 20 basis functions, combinations
of Npod ∈ {20, 50, 100, 200, 500} and Nreg ∈ {100, 200, 300, 400, 500, 1000} are
tested. The mean and maximum error plots can be seen in Fig. 3.11. It can be
observed that for all cases with Nreg > 50, the mean error is below 1%. The mean
error improves as more snapshots are considered for the POD basis, suggesting
that there is still new information in the snapshots, which fine-tunes the optimal
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Figure 3.9: Eigenvalues of the correlation matrix for different numbers of snapshots used
for POD.
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Figure 3.10: Von Mises stress of the first three POD basis functions of the microscopic
stress field.

basis. The mean error reaches around 0.04% for Nreg = 500 snapshots with
a maximum error of around 1%. Increasing Nreg from 500 to 1000 does not
improve the mean error significantly, meaning that the projection error has
already been reached with 500 snapshots and L = 20 basis functions. Weighing
the approximation error over the number of full computations needed, Npod =
Nreg = 200 is considered in the subsequent analysis.

Influence of L Using Npod = Nreg = 200, the influence of L is investigated.
The mean and maximum error of the approximation error over the number
of basis functions L used are shown in Fig. 3.12. The projection error is
also plotted to reveal the quality of the regression of Eq. (3.21). As seen
from Fig. 3.12, the mean and maximum error for the first 11 basis functions



3.2. Numerical examples for fixed geometry 47

200 400 600 800 1000
Nreg

10−3

10−2

M
ea

n
E

rr
or

Npod = 20

Npod = 50

Npod = 100

Npod = 200

Npod = 500

200 400 600 800 1000
Nreg

10−2

10−1

M
ax

E
rr

or

Npod = 20

Npod = 50

Npod = 100

Npod = 200

Npod = 500

Figure 3.11: Comparison of stress errors for different combinations of Npod and Nreg for L =
20.
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Figure 3.12: Comparison of stress errors for different L with Npod = 200 and Nreg = 200.

match the projection error quite well, and afterwards flatten out, similar to the
last example. When the number of snapshots Nreg is increased to 500, the mean
error matches the projection error for 16 basis functions, as seen in Fig. 3.13,
while the maximum error also slightly improves.

Comparison with neural network Similarly to the last example, deep
forward neural networks with different architectures are trained for comparison.
The available 500 training data and 1000 testing data are used for training and
validation. The same network architecture configurations as described in the
introduction are tested, with one additional combination Nh = 2, Nn = 100. The
results are given in Table 3.2. The fourth architecture Nh = 2, Nn = 50 performs
the best with an average error of 0.39% and a maximum error of 2.06%. Same
as for the previous example, PODGPR outperforms the neural network. With
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Figure 3.13: Comparison of stress errors for different L with Npod = 200 and Nreg = 500.

Table 3.2: Validation loss and effective stress error for different feedforward neural network
architectures. The lowest values in each column have been highlighted in bold face.

Architecture Validation Loss εmean
P

εmax
P

Nh = 1, Nn = 20 1.7× 10−6 0.0077 0.0368
Nh = 1, Nn = 50 8.55× 10−7 0.0056 0.0289
Nh = 2, Nn = 20 5.36× 10−7 0.0047 0.0176
Nh = 2, Nn = 50 2.97× 10−7 0.0039 0.0206
Nh = 2, Nn = 100 7.91× 10−7 0.0052 0.0315

only 200 training snapshots, PODGPR achieves roughly the same accuracy as
the NN using 500 snapshots. With 500 employed snapshots, PODGPR reaches
a mean and maximum error of 0.04% and 1%, hence outperforming the neural
network, while also being able to recover the microscopic stress field.

Remark on periodic boundary conditions For the same microstructure
(Fig. 3.8), an analogous analysis using periodic boundary conditions was con-
sidered, defined in Section 2.2.2. In contrast to kinematic boundary conditions,
the fluctuation displacement field wp is assumed to be periodic on the RVE
boundary. The obtained results regarding the approximation quality are shown
in Fig. 3.14, where Npod = 200 and Nreg = 500 was chosen. In comparison
to Fig. 3.13, the results are comparable and hence it can be concluded that
PODGPR works independently of the chosen boundary conditions.

3.2.3 Two-scale Cook’s membrane problem

To show the performance of PODGPR in a two-scale simulation, the learned
constitutive model for the fiber reinforced RVE with Npod = Nreg = 200 is em-
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Figure 3.14: Fiber reinforced material with periodic boundary conditions: Comparison of
stress errors for different L with Npod = 200 and Nreg = 500.

bedded inside a FE solver. For the macroscopic problem the Cook’s membrane,
consisting of the fiber reinforced RVE, is chosen. The geometry and mesh of the
membrane are given in Fig. 3.15. The macroscopic mesh consists of 200 bilinear
quadrilateral elements with 4 quadrature points. The quadrature points A and
B, as marked on the figure, denote points in which the microscopic stress fields
are compared against the reference solution. The reference solution is obtained
by running a full two-scale FE2 simulation. The left side of the sample is fixed
and the right side is loaded in five time steps with a vertical traction of 0.1,
which leads to local deformations of up to 30%. The material parameters of
the fiber are taken to be fixed with C1 = D1 = 100 in this example.

The yx-component of the macroscopic stress P yx obtained by the full FE2
and FE with PODGPR simulation are given in Fig. 3.16, while the microscopic
stress Pyx at point A and B are shown in Fig. 3.17 and Fig. 3.18. The relative
error defined as εPyx

:= |PFE2
yx − PROM

yx |/
〈
|PFE2

yx |
〉
, with

〈
|PFE2

yx |
〉

the averaged
absolute stress, is also shown (Figs. 3.16c, 3.17c and 3.18c). As can be seen, the
shape of the stress field of both solutions is indistinguishable. Even though the
relative errors for the microscopic problem reach a maximum of 7% near the
interface of matrix and fiber, after homogenization the highest error reduces to
merely 1%. This discrepancy is due to the fact that the method tries to reduce
the L2-norm of the error in the stress field and therefore allows locally high
errors.

Using 48 cores1, the FE2 simulation takes around 100 minutes while the
simulation with PODGPR is completed within 1 minute on a single core2,
resulting in a speed-up of about three orders of magnitude. For PODGPR,

1Intel Xeon Platinum 8260
2Intel Core i7-8750H
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Figure 3.15: The left side was fixed while a traction in the vertical direction of 0.1 was
applied along the right side. The mesh consisted of 200 bilinear elements and 231 nodes. The
microstructural stress field at the marked quadrature points A and B will be shown later.

200 RVE simulations have to be pre-computed, which takes less than one hour
on a single core. Performing the POD and GPR to construct PODGPR takes
around one minute.
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(a) FE2 (b) FE with PODGPR (c) Relative error

Figure 3.16: Macroscopic stress field.

(a) FE2 (b) FE with PODGPR (c) Relative error

Figure 3.17: Microscopic stress field at Point A.

(a) FE2 (b) FE with PODGPR (c) Relative error

Figure 3.18: Microscopic stress field at Point B.
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3.3 Numerical examples for varying geometry

In this section, the performance of PODGPR is demonstrated for varying
geometries. PODGPR is first applied onto two geometrically parameterized
microstructures to showcase the generality of the approach and its accuracy.
Then, a two-scale Cook’s membrane problem is shown to illustrate the speed-up
and its potential applications.

Same as in Section 3.2, all examples are defined in 2D under plane strain
conditions, and all quantities are normalized and considered dimensionless. All
RVEs are assumed to be of size [0, 1]2, and the polar decomposition (cf. Re-
mark 2.1.1) is employed to reduce the number of load parameters. The nonlinear
physical simulations are solved within the Finite Element framework MOOSE
[99] and the linear auxiliary problems are solved with an in-house code3 written
in Python. As mentioned in Remark 3.1.2, to obtain physically consistent trans-
formations without the need for interpolation, we use the auxiliary problem to
generate simulation meshes.

To quantify the quality of the approximation, the following two error
measures are introduced:

1. Relative error of stress field

εP =
||P truth − P PODGPR||L2(Ωµ)

||P truth||L2(Ωµ)
, (3.38)

2. Relative error of effective stress

εP =
||P truth − P PODGPR||F

||P truth||F
, (3.39)

where (•)truth and (•)PODGPR indicate the full and approximate solution,
and ||(•)||L2(Ωµ) and ||(•)||F denote the L2(Ωµ) and the Frobenius norm,
with Ωµ the parameterized domain. The average errors for given testing
datasets are defined as:

εP =
1

Ntest

Ntest∑
n=1

εnP , εP =
1

Ntest

Ntest∑
n=1

εn
P
, (3.40)

where Ntest is the number of testing snapshots and εnP and εn
P

correspond to
the relative errors of the n-th snapshot.

For comparison, we also trained several deep feed-forward neural networks
for the effective stress using the same data for each example, similar to the

3The implementation can be found on https://github.com/theronguo/auxiliary-problem.
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results in Section 3.2. All considered neural networks have as many inputs
as the number of parameters, 4 outputs for each stress component and 2
hidden layers each with Nn neurons. We trained four architectures with Nn ∈
{50, 100, 200, 300}. These four architectures will be referred to as NN1, NN2,
NN3 and NN4. ELU activation functions are applied on each layer apart from
the last layer. For the optimization, the mean squared error loss function
is chosen and optimized with the Adam optimizer [66] with a learning rate
of 1× 10−4 and a batch size of 32 for 10000 epochs. The training is performed
with the Python package PyTorch [98].

3.3.1 Composite microstructure with an elliptical fiber

In the first example, a composite structure, consisting of a soft matrix and
an elliptical stiff fiber around the center of the domain Xc = [0.5, 0.5]T , is
considered. Three geometrical parameters that parameterize the fiber shape,
the semi-major axis a, semi-minor axis b and a rotation angle θ, are considered,
see Fig. 3.19b. Together with the three loading directions Uxx, Uyy and Uxy,
this problem has Nin = 6 parameters. For the matrix material a Neo-Hookean
material model (see Appendix A.1.1 for the definition) with C1 = 1 and D1 =
1 is chosen, while for the fiber material a Neo-Hookean material model with C1 =
100 and D1 = 100 is assumed, corresponding to a stiffness that is 100 times
higher than the matrix material. Both materials have Poisson’s ratio 0.25.
The considered parameter ranges are given in Table 3.3. Lower and upper
bounds for the macroscopic stretches U are chosen such that the solution of
the microstructural problem converges for all parameter configurations: for
some geometrical parameters, a few elements of the parent mesh might become
highly distorted after applying the geometrical transformation; together with
the high contrast of material stiffness of both materials, larger magnitudes than
0.15 of the components U − I lead to convergence issues. If larger magnitudes
have to be considered, a different parent domain could be employed or a smaller
parameter space of the geometrical parameters could be chosen.

Table 3.3: 6 parameters with corresponding ranges. The parameters a, b and θ are the
geometrical parameters describing the interface while Uxx, Uyy and Uxy are external loading
parameters.

a b θ Uxx − 1 Uyy − 1 Uxy

[0.1, 0.35] [0.1, 0.35] [−π/2, π/2] [−0.15, 0.15] [−0.15, 0.15] [−0.15, 0.15]

Setup of the auxiliary problem For the parent domain, a domain with a
circular inclusion with radius a = b = r = 0.225 is chosen, see Fig. 3.19a. The
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(a) (b)

Figure 3.19: Parent and parameterized domain. (a) The chosen parent domain with a
circular interface with fixed radius a = b = r = 0.225, and (b) the parameterized domain,
characterized by semi-major axis a, semi-minor axis b and angle θ. The parent mesh consists
of a total of 20769 nodes and 10306 6-node triangular elements.

employed simulation mesh consists of 20769 nodes and 10665 6-node triangular
elements. The transformation of the circular interface into the elliptical interface
can be given as:

xµ(xp) = R̂

[
a/r 0
0 b/r

](
r̃(xp −Xc) cos(θ̃(x

p −Xc)− θ)

r̃(xp −Xc) sin(θ̃(x
p −Xc)− θ)

)
+Xc, (3.41)

where

R̂(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, (3.42)

r̃(xp) =
√

xpTxp, (3.43)

θ̃(xp) = arctan2(xp, yp), (3.44)

with xp = [xp, yp]T a column matrix of each of the nodal positions located
at the interface. The arctan2-function of Eq. (3.44) is an extension of the
arctan-function defined as,

(x, y) 7→



arctan(y/x) x > 0,

arctan(y/x) + π x < 0, y ≥ 0,

arctan(y/x)− π x < 0, y < 0,

π/2 x = 0, y > 0,

−π/2 x = 0, y < 0,

undefined x = 0, y = 0.

(3.45)

The Poisson’s ratio ξaux for the auxiliary problem is first chosen to be 0.3. In
the results below, its influence on the accuracy of obtained results is discussed.
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Figure 3.20: Eigenvalues of the correlation matrix for (a) weighted stress and (b) trans-
formation displacement. For the weighted stress the eigenvalues decay quickly, while for the
transformation displacement only the first three modes are nonzero. This means that the
transformation displacement can be represented with only three basis functions.

Data generation In total Nreg = 1000 training snapshots are generated, of
which 26 = 64 snapshots are at the corners of the 6-dimensional parameter
space and the rest are sampled from a Sobol sequence [123]. For testing, an-
other Ntest = 500 snapshots are generated from a random uniform distribution.

POD of weighted stress and transformation displacement The eigen-
values of the correlation matrix for the weighted stress are given in Fig. 3.20a.
It can be observed that the eigenvalues decay quickly, indicating a good reducib-
ility. To show that the auxiliary problem in Eq. (3.3) can be reduced drastically,
the eigenvalues of the correlation matrix for the transformation displacement
are also shown in Fig. 3.20b. All but three eigenvalues are essentially zero,
showing that the auxiliary problem can be solved with three basis functions.

Approximation errors The average approximation error of the effective
stress on the 500 testing snapshots of PODGPR for different numbers of basis
functions L and training snapshots Nreg is shown in Fig. 3.21. All Nreg training
snapshots are used for both the POD and GPR. In Fig. 3.21a, the error decays
rapidly for the first few basis functions. For L = 20 an error of roughly 0.5% is
reached. However, taking into account more basis functions barely improves
the performance since the coefficients get increasingly more oscillatory with
increasing number and, hence, more difficult to approximate with a GPR model,
similar to the results in Section 3.2. From Fig. 3.21b, we see that a higher
number of snapshots is crucial for the accuracy of PODGPR. Data shown
corresponds to L = 20 basis functions. For small datasets the error increases
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Figure 3.21: (a) Average error of the effective stress over number of basis functions
with Nreg = 1000 training snapshots. The error curve decays rapidly for the first few basis
functions and then flattens out. (b) Average error of the effective stress over number of
training snapshots used for L = 20 basis functions. The error increases drastically when fewer
training snapshots are used.

exponentially, indicating a poor approximation of the first 20 POD coefficients.
In Table 3.4, the approximation quality of PODGPR with L = 20 basis

functions is compared with the four neural networks. The projection error
(defined as the error of projecting the truth solution onto the reduced basis)
with L = 20 basis functions is also given. PODGPR approximates the effective
stress better than all the NN models at least by a factor of 2. Moreover, it is
nearly able to reach the error of the projection error in both error measures,
indicating that with Nreg = 1000 training snapshots the first 20 POD coefficients
can be well captured. The error in the stress field is less than 0.1%, while for
the effective stress the error is 0.5%. Furthermore, by comparing the results
with Fig. 3.21b, it can be seen that the best results obtained by the neural
networks are reached by PODGPR with only Nreg = 600 snapshots, showing
that PODGPR is more data efficient than the neural networks in this case.

Table 3.4: Approximation errors for different methods. The trained surrogate models are
tested on 500 testing snapshots. PODGPR outperforms all NN models by a factor 2.

Projection PODGPR NN1 NN2 NN3 NN4
εP 8.17× 10−4 9.49× 10−4 n.a. n.a. n.a. n.a.
εP 2.74× 10−3 5.06× 10−3 2.66× 10−2 1.53× 10−2 1.02× 10−2 9.8× 10−3

Influence of Poisson’s ratio of the auxiliary problem In this ex-
ample, the influence of the auxiliary Poisson’s ratio on the approximation
of the effective stress is investigated, considering ξaux ∈ {−0.99,−0.8,−0.5, 0.0,
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Figure 3.22: Norm of transformation displacement with a = 0.104, b = 0.291, θ = −8.44◦ for
(a) ξaux = 0.0 and (b) ξaux = 0.49. While the former leads to localized deformations, the
latter affects the entire domain. (c) The mean error plotted over the Poisson’s ratio ξaux. The
errors decrease with decreasing ξaux, but remain on the same order of magnitude O(10−3).

0.15, 0.3, 0.49}. Example transformation maps for ξaux ∈ {0.0, 0.49} are shown
in Figs. 3.22a and 3.22b and the obtained errors are plotted over the Poisson’s
ratio in Fig. 3.22c. For this example, the lower the Poisson’s ratio the better the
approximation. Nevertheless, all error values are close to each other (ranging
from 0.46% to 0.58%), although the transformation displacement field differs
significantly, see Figs. 3.22a and 3.22b. This empirical result suggests that the
choice of the Poisson’s ratio is insignificant and, since there is no practical way
of finding the best value, ξaux = 0.3 is adopted hereafter.

3.3.2 Composite microstructure with a B-spline controlled
inclusion shape

In the second example, an inclusion with a shape that is described by a B-spline
with eight control points is considered, see Fig. 3.23a. The x-coordinate of
the center left and right control point and the y-coordinate of the middle
top and bottom control point are parameterized, resulting in four geometrical
parameters a, b, c and d. The curve is then interpolated with cubic polynomials
using the Python library NURBS-Python [12]. The same material parameters
are chosen as in the first example, with parameter ranges given in Table 3.5. A
few example geometries are shown in Fig. 3.24 to show the variety of shapes
covered by this parameterization. The lower and upper bounds for U are chosen
in the same way as in the previous example in Section 3.3.1.

Setup of the auxiliary problem For the parent domain, the midpoint of
the parameter domain is selected, i.e., a = b = 0.25 and c = d = 0.75. The
corresponding geometry and mesh, consisting of 11296 nodes and 5833 6-node
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Table 3.5: 7 parameters with corresponding ranges. The parameters a, b, c and d
are geometrical parameters describing the interface, see Fig. 3.23 for the explanation,
while Uxx, Uyy and Uxy are external loading parameters.

a b c d Uxx − 1 Uyy − 1 Uxy

[0.1, 0.4] [0.1, 0.4] [0.6, 0.9] [0.6, 0.9] [−0.15, 0.15] [−0.15, 0.15] [−0.15, 0.15]

(a) (b)

Figure 3.23: Parameterized domain. (a) The interface is spanned by eight control points.
Out of those, four control points can move in one direction, which are controlled by the
geometrical parameters a, b, c and d. (b) The parent geometry with a = b = 0.25 and c =
d = 0.75 is chosen and the mesh consists of 11296 nodes and 5566 6-node triangular elements.

triangular elements, are shown in Fig. 3.23.

Data generation In total Nreg = 1000 training snapshots are again generated
from a Sobol sequence [123], while another Ntest = 500 snapshots are generated
from a random uniform distribution for testing.

POD of weighted stress and transformation displacement The eigen-
values of the correlation matrix for both weighted stress and transformation
displacement are depicted in Fig. 3.25. A fast decay can be observed for
the weighted stress, while all but four eigenvalues are essentially zero for the
transformation displacement.

Approximation errors The average approximation errors on the 500 testing
snapshots of the projection error (projection of truth solution onto the reduced
basis) with L = 50 basis functions, PODGPR with L = 50 basis functions and
the four neural networks are reported in Table 3.6. From the results it can be
observed that PODGPR nearly reaches the projection error, showing that the
first 50 coefficients are well approximated by the GPR models. Furthermore,
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Figure 3.24: Example geometries. The control points are shown in orange color and the
resulting interface in blue color.

it outperforms all neural network architectures by a factor of 2, reaching an
average error of 0.131% in effective stress.

Table 3.6: Mean errors for different methods. The trained surrogate models are tested on
500 testing snapshots. PODGPR outperforms all NN models by a factor 2.

Projection PODGPR NN1 NN2 NN3 NN4
εP 1.79× 10−4 1.85× 10−4 n.a. n.a. n.a. n.a.
εP 1.09× 10−3 1.31× 10−3 3.3× 10−3 2.5× 10−3 2.2× 10−3 2.3× 10−3

3.3.3 Geometrically parameterized two-scale Cook’s
membrane problem

While the last two examples dealt with the construction of the surrogate
model for the microscale, in this example the surrogate model is employed in a
full two-scale Cook’s membrane problem. Here, the microstructure from Sec-
tion 3.3.1 with an elliptical inclusion is considered. The geometry of the Cook’s
membrane and its mesh are shown in Fig. 3.26. The mesh consists of 200
quadrilateral elements with 4 quadrature points, resulting in 800 microstruc-
ture evaluations required for a single Newton iteration. The microstructural
parameters a and b are assumed to be constant with a = 0.35 and b = 0.1,
corresponding to an ellipse, while the angle θ is a function in the x-coordinate
with θ(x) = (π sinx)/2, in order to test the performance of the surrogate model
under rapidly varying fiber directions (see Fig. 3.26c for an illustration of the
function). A similar test problem was considered in [111]. The left side of the
membrane is fixed, while a vertical traction of 0.05 is applied on the right edge,
which leads to overall deformations within the training range of the surrogate
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Figure 3.25: Eigenvalues of the correlation matrix for (a) weighted stress and (b) trans-
formation displacement. Same as for the last example, the eigenvalues of weighted stress
decay exponentially. For the transformation displacement only the first 4 modes are nonzero,
meaning it can be represented with 4 basis functions.
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Figure 3.26: (a) The geometry of the Cook’s membrane and (b) corresponding simulation
mesh used. The mesh consists of 231 nodes and 200 4-node quadrilateral elements. (c) The
fiber direction depends on the x-coordinate as θ(x) =

π

2
sinx.

model (|Uxx − 1|, |Uyy − 1|, |Uxy| < 0.15).
A full FE2 simulation and a FE simulation using PODGPR are run and the

obtained displacement fields u are compared in Fig. 3.27. The PODGPR surrog-
ate model constructed with L = 20 basis functions from Nreg = 1000 training
snapshots is used. The obtained displacement fields shown in Figs. 3.27a
and 3.27b are almost identical. To further quantify the error, the magnitude
of the difference between both displacement solutions is shown in Fig. 3.27c.
Here we observe that the highest absolute error is at the top right corner and
the error increases from left to right. Comparing the error and the actual value
at the top right corner, the relative error corresponds to 0.058/3.56 = 1.6%.
Furthermore, vertical stripes with similar errors can be seen, which corres-
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(a) FE2 (b) FE-PODGPR (c) Absolute error

Figure 3.27: The norm of the displacement obtained for (a) FE2 and (b) FE with PODGPR.
The displacement fields are nearly identical. (c) The magnitude of the absolute error
∆u := uFE2−uPODGPR between both solutions. The error is around two orders of magnitude
lower than the displacement values and increases from left to right. Vertical stripes are visible,
corresponding to the rapidly varying fiber orientations, showing that some angles are better
or worse approximated.

pond to the quickly varying fiber directions in the x-coordinate, meaning
that some angles are better or worse approximated. The quality of approx-
imation for different angles depends on the sampling of the training snap-
shots. Moreover, the compliance fc := fext · u, where fext corresponds to
the externally applied vertical traction, is computed for both methods, yield-
ing f truth

c = 2.227 and fPODGPR
c = 2.202, implying a relative error of 1.1%.

This is an important quantity, often used in optimization problems.
The execution times4 for both cases are reported in Table 3.7. For the

construction of PODGPR, 1000 snapshots are generated, involving each time
an auxiliary problem and a full simulation to be solved, taking roughly 4 hours.
With the data available, the construction of PODGPR with 20 basis functions
takes around 10 minutes. After this offline computation, the online speed-up is
on the order of 1000 as compared to the full two-scale simulation.

4All operations were executed using four subprocesses on an Intel Core i7-8750H.
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Table 3.7: Run times. The offline stage for constructing PODGPR takes roughly 260
minutes. Then, the Cook’s membrane problem can be solved within 0.5 minutes, while at the
same time the full FE2 simulation takes around 1080 minutes for a single forward solution.

FE2 FE-PODGPR

Offline n.a
Auxiliary Problem: ≈ 10min

Snapshot Generation: ≈ 240min
PODGPR: ≈ 10min

Online ≈ 1080min ≈ 0.5min

3.4 Conclusions

In this chapter, by combining proper orthogonal decomposition, Gaussian
process regression, and a PDE-based transformation method for the treatment
of geometrical parameters, we developed a non-intrusive surrogate model that
can learn an effective constitutive model and replace the microscopic problem
arising in first-order computational homogenization. With the reduced model,
the effective quantities can be rapidly and accurately inferred for a wide range
of geometries and material parameters. Moreover, the microscopic stress
fields can be fully recovered and visualized, and they automatically fulfill the
underlying microscopic governing equations by construction. Additionally,
the effective sensitivities with respect to the microstructural parameters can
be easily computed, which could be utilized for two-scale shape optimization
problems or inverse problems. Due to the non-intrusive nature of the method,
it can be easily implemented into any existing finite element solver.

Several numerical examples were studied to assess and validate the method-
ology. First, the framework was tested for microstructures with fixed geometry.
For the two considered microstructures, involving a porous and a fiber-reinforced
material, the proposed method captured the effective stress accurately with a
mean error of 0.1%. The trained surrogate model was then employed inside a
macroscopic simulation, and the reduced two-scale simulation was compared
with the full two-scale FE2 simulation, where it reached high accuracy on both
macro- and microscale, and an online speed-up of the order of 1000 was observed.
Subsequently, geometrically parameterized microstructures were considered.
For two microstructures, each described by several geometrical parameters, the
surrogate model approximated the stresses with an average error of less than
1%. Embedded in a two-scale problem, where a high variation in geometrical
parameters throughout the macroscopic domain was considered, it accelerated
the simulation by a factor of 1000, while maintaining high accuracy.

Although this method is powerful, there exist several limitations:
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1. For geometrical parameters leading to very severe geometrical variations,
the proposed transformation method leads to highly irregular and dis-
torted meshes. A possible remedy to resolve this issue is to correct the
distorted elements by mesh refinement, or to use multiple parent geomet-
ries with local surrogate models. In the online stage, the closest cluster
could be chosen to evaluate the surrogate model.

2. Another challenge is the requirement of data. Even though the methodo-
logy proved to be more data efficient than feedforward neural networks
in our examples, still a rather large amount of training data is needed.
Possible solutions include multi-fidelity methods or adaptive sampling
schemes.

3. The treatment of history-dependent material behavior, such as plasticity,
is challenging. For such materials, Gaussian process regression cannot
be used, but instead recurrent neural networks, such as long short-term
memory (LSTM) or gated recurrent unit (GRU) networks, that contain
an internal state, have to be considered. However, these methods typically
require vast amounts of data, and generating these amounts of data might
become infeasible for complicated microstructures, especially in 3D.
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In Chapter 3, a data-driven non-intrusive surrogate model of the microscopic
problem in first-order computational homogenization (FE2) was derived through
a combination of proper orthogonal decomposition (POD), Gaussian process
regression (GPR) and a geometrical transformation method. After training, the
surrogate model is highly efficient as it only involves the evaluation of few GPR
models and the addition of small matrices. However, the method requires rather
large amounts of data and, more crucially, extensions to history-dependent
material behaviors, such as plasticity, are difficult.

In this chapter, an intrusive surrogate model for the geometrically paramet-
erized microscopic PDE is proposed by employing the reduced basis method
(RBM) [103] and the empirical cubature method (ECM) [48], later referred to as
PODECM. Both methods reduce the complexity of the microscopic FE model,
such that it can be solved more efficiently. As the PDE is still being solved,
history-dependent material behavior can be treated in straightforward manner.
Similar to the method in Chapter 3, the surrogate model is constructed on the
parent domain Ωp. For any new geometry Ωµ, the linear auxiliary problem can
be rapidly solved and the reduced model adapted to each geometry.

4.1 Surrogate modelling

4.1.1 Reduced basis method

When solving the microscopic problem in Eq. (2.11) for complex problems
and geometries, typically a fine mesh is required for the full FE model, lead-
ing to a high-dimensional solution space Vph for the fluctuation displacement
field wp with dimVph = N , see Section 2.2.3. The idea of the RBM is to ap-
proximate the solution field with global parameter-independent basis functions
and parameter-dependent coefficients, i.e.,

wp(xp;F ,λ,µ) ≈
N∑

n=1

an(F ,λ,µ)vn(x
p), (4.1)

where N is the number of basis functions, typically much smaller than the
dimension of the FE space, i.e., N ≪ N . The basis functions, {vn}Nn=1, span a
subset of Vph and can be obtained by applying POD on a set of pre-computed
full solutions for different parameter values. More information on POD and
how to compute the basis functions {vn}Nn=1 is given in Appendix B, and more
information on the RBM can be found in [103].

By utilizing the POD space for both the trial and test space and insert-
ing wp from Eq. (4.1) into Eqs. (2.11) and (2.12), the components for the



4.1. Surrogate modelling 67

reduced internal force vector fPOD ∈ RN and reduced global stiffness mat-
rix KPOD ∈ RN×N can be derived as

fPOD
i (a) :=

∫
Ωp

(
(∇xpvi)F

−1
µ

)
: P p(F p) |detFµ| dxp, (4.2)

KPOD
ij (a) :=

∫
Ωp

(
(∇xpvi)F

−1
µ

)
: Ap(F p) :

(
(∇xpvj)F

−1
µ

)
|detFµ| dxp, (4.3)

F p(a) := F +

(
N∑

n=1

an∇xpvn

)
F−1
µ , (4.4)

where a = [a1, . . . , aN ]T is the column matrix of unknown coefficients to be
solved for, and i, j = 1, . . . , N span over all basis functions. Analogously to
Eqs. (2.33) and (2.34), the resulting non-linear system of equations,

fPOD(a) = 0, (4.5)

can be solved using Newton method:

KPOD(am)∆a = −fPOD(am),

am+1 = am +∆a.
(4.6)

4.1.2 Empirical cubature method

Even though the solution field and linear system of equations have been reduced
to dimension N ≪ N , computing the components of the force vector in Eq. (4.2)
and global stiffness matrix in Eq. (4.3) still requires integrating over the RVE.
For the full integration, a numerical quadrature rule (usually based on Gauss
quadrature) with integration points and corresponding weights {(x̂q, ŵq)}Q̂q=1,
where Q̂ is the total number of integration points, is employed, i.e.,

fPOD
i (a) ≈

Q̂∑
q=1

ŵq

[(
(∇xpvi)F

−1
µ

)
: P p(F p) |detFµ|

]∣∣
x̂q

, (4.7)

for i = 1, . . . , N . Analogous expression holds for Eq. (4.3). For a fine mesh, Q̂ is
very large and evaluating Eq. (4.7) thus leads to high computational costs,
especially in cases in which evaluation of the constitutive law P p(F p) is ex-
pensive, such as in plasticity. To address this issue, we employ ECM, which
was proposed in Hernández et al. [48] for a fixed geometry, and generalize it to
parameterized geometries.

The idea of ECM is to find a subset of points {xq}Qq=1 ⊂ {x̂q}Q̂q=1, with Q≪
Q̂ among the set of all integration points, with corresponding weights {wq}Qq=1
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that approximates Eq. (4.7) up to a user-defined error εECM. To find such a
subset that approximates Eq. (4.7) well for all admissible geometrical paramet-
ers µ, Eq. (4.7) is first rewritten as

fPOD
i (a) =

Q̂∑
q=1

ŵq

(∇xpvi) :
(
P p(F p)F−T

µ |detFµ|
)︸ ︷︷ ︸

W p:=


∣∣∣∣∣∣∣
x̂q

=

Q̂∑
q=1

ŵq

[
(∇xpvi) : W

p(xp;F ,λ,µ)
]∣∣

x̂q
,

(4.8)

where the weighted stress W p has been defined in analogy with Eq. (3.6). To
remove the parameter dependence of the integrand in Eq. (4.8) (the term in
the square bracket), the weighted stress is approximated by another reduced
basis, i.e.,

W p(xp;F ,λ,µ) ≈
L∑
l=1

αl(F ,λ,µ)Bl(x
p), (4.9)

where {Bl}Ll=1 is a set of L basis functions obtained using POD, which are
orthonormal with respect to L2(Ωp), i.e.,∫

Ωp
Bm : Bn dx

p = δmn. (4.10)

Inserting Eq. (4.9) into Eq. (4.8) and rearranging yields,

fPOD
i (a) ≈

L∑
l=1

αl(F ,λ,µ)

Q̂∑
q=1

ŵq [(∇xpvi) : Bl]|x̂q
, i = 1, . . . , N. (4.11)

Since Eq. (4.11) should be accurate for any choice of coefficients αl(F ,λ,µ),
all the N · L terms in Eq. (4.11) that approximate the integral have to be
approximated as accurately as possible. Hence, the goal becomes to find a sub-
set Q(≪ Q̂) of integration points with corresponding weights {(xq, wq)}Qq=1 that
approximates Eq. (4.11) well, i.e.,

Q̂∑
q=1

ŵq [(∇xpvi) : Bl]|x̂q
≈

Q∑
q=1

wq [(∇xpvi) : Bl]|xq
, (4.12)

for i = 1, . . . , N and l = 1, . . . , L. These Q points and corresponding weights are
found using a greedy algorithm, as proposed in [48], which is briefly summarized



4.1. Surrogate modelling 69

in Appendix F. The algorithm is terminated when the mean squared error of
all N · L terms is less than a user-defined tolerance εECM.

Compared to the original algorithm for a fixed geometry, as proposed in [48],
the only differences are that the weighted stress W p is employed instead of
the stress P p and that the parent domain Ωp is considered instead of a fixed
domain Ω. With the ECM integration rule, the hyperreduced force vector and
global stiffness matrix are computed as

fECM
i :=

Q∑
q=1

wq

[(
(∇xpvi)F

−1
µ

)
: P p(F p) |detFµ|

]∣∣
xq

, (4.13)

KECM
ij :=

Q∑
q=1

wq

[(
(∇xpvi)F

−1
µ

)
: Ap(F p) :

(
(∇xpvj)F

−1
µ

)
|detFµ|

]∣∣
xq

.

(4.14)

Remark 4.1.1 The computational costs of the ECM greedy algorithm as pro-
posed in [48] increase drastically with the number of selected integration points,
since for every selected point a non-negative least squares problem needs to
be solved. As pointed out in [22], rank-one updates can be used with the least
squares solver for better efficiency. Such a refined version of the ECM algorithm
was presented in [50]. For the numerical examples considered in this work, the
original ECM algorithm in [48] was sufficiently fast and we did not use the
algorithmically improved version.

4.1.3 Effective quantities

Once the new set of integration points and weights is found, the integrands
of Eqs. (4.13) and (4.14) only need to be evaluated at the points {xq}Qq=1 during
the solution of the reduced problem. This also means that the stress and
stiffness fields are available at these points only. To compute the effective stress
(cf. Eq. (2.16)), the most straightforward method is to use the integration rule
obtained by ECM, i.e.,

P = |Ωp|−1

∫
Ωp

P ∗p|detFµ|dxp

≈ |Ωp|−1
Q∑

q=1

wq (P
∗p| detFµ|)|xq

.

(4.15)

Since the stress field P ∗p is known at all integration points {xq}Qq=1, the effective
stress can be directly evaluated. The method yields very accurate results in the
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examples considered below in Section 4.2. However, it should be noted that
there is currently no guarantee that the integration rule found by ECM will
generally be accurate for the computation of the effective stress. In general, the
effective stress can have two sources of error as compared to the full solution:
one comes from the solution of the reduced system and one from an inaccurate
integration of the obtained stress field. The ECM integration points are selected
such that the first error is minimized, but this also indirectly affects the second
one to decrease, although not as quickly. This can be observed in the results of
the first numerical example presented in Section 4.2.1. To ensure an accurate
integration of the effective stress, it could be included into the ECM algorithm as
a criterion. This idea is implemented in the hyperreduction algorithm proposed
in Section 5.2.2 for second-order computational homogenization.

As discussed in Section 2.2.1, derivatives ∇Fw
∗p are needed to find the

effective stiffness A, see Eq. (2.17). For each component of F , the linear tangent
problem of Eq. (2.20) needs to be solved. By employing the trial space of the
fluctuation field for the auxiliary function qkl (which represents the sensitivity
of w∗p with respect to the kl-th component of F ), i.e.,

qkl =
N∑

n=1

qnvn(x
p), (4.16)

and the integration rule found by ECM, the following linear system of equations
results for each F kl:

K∗pq = b, (4.17)

where q = [q1, . . . , qN ]T is the column matrix of unknowns to be solved for and

K∗p
ij =

Q∑
q=1

wq

[(
(∇xpvi)F

−1
µ

)
: A∗p :

(
(∇xpvj)F

−1
µ

)
|detFµ|

]∣∣
xq

, (4.18)

bi = −

 Q∑
q=1

wq

[(
(∇xpvi)F

−1
µ

)
: A∗p |detFµ|

]∣∣
xq

 : Ekl. (4.19)

Note that the matrix K∗p ∈ RN×N is exactly the same as the global stiffness
matrix K of Eq. (4.14) evaluated at the solution w∗p. After solving the tangent
problem for each component of F , the effective stiffness A can be computed
(in index notation) as

Aijkl = |Ωp|−1
Q∑

q=1

wq

(
∂P ∗p

ij

∂F kl

| detFµ|
)∣∣∣∣∣

xq

, (4.20)
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where

∂P ∗p

∂F kl

= A∗p :
(
Ekl +

(
(∇xpqkl)F

−1
µ

))
. (4.21)

4.1.4 Summary

For convenience, the offline-online decomposition for constructing and solving
the surrogate model, referred to as PODECM, is summarized in Algorithm 2.

Algorithm 2 Offline-online decomposition of the proposed PODECM frame-
work with microstructures parameterized with external loading F , microstruc-
tural material parameters λ and geometrical features µ.
Offline Stage:
1: Define a parent domain Ωp and its finite element discretization.
2: Generate parameter samples {F (i),λ(i),µ(i)}Ntrain

i=1 from a random distribu-
tion on P, where Ntrain is the number of training samples.

3: For each different set of geometrical parameters µ(i), solve the auxiliary
problem in Eq. (3.2) to obtain the transformation map Φµ(i) .

4: Compute F−1
µ(i) and detFµ(i) for each parameter sample µ(i), then run

full RVE simulations (Eqs. (2.11) and (2.12)) for (F (i),λ(i),µ(i)) and col-
lect fluctuation displacements wp(xp;F (i),λ(i),µ(i)) and weighted stress
snapshots W p(xp;F (i),λ(i),µ(i)).

5: Compute POD for the fluctuation displacements and weighted stresses,
see Eqs. (4.1) and (4.9).

6: Run ECM algorithm and find integration points and weights, see Eq. (4.12)
and Appendix F.

7: Assemble the reduced system matrix and forcing vector for the auxiliary
problem in Eq. (3.4) by applying POD and DEIM, see Section 3.1.1.

Online Stage:
1: Given a new parameter set (F ∗,λ∗,µ∗), solve the reduced auxiliary problem

in Eq. (3.4) and compute F−1
µ∗ and detFµ∗ .

2: Solve reduced problem for (F ∗,λ∗,µ∗) with Eqs. (4.13) and (4.14).
3: Compute effective stress using Eq. (4.15).
4: Solve the linear tangent problem Eq. (4.17) for each component of F .
5: Compute components of the effective stiffness with Eqs. (4.20) and (4.21).
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4.2 Numerical examples

The proposed framework, referred to as PODECM, is first tested on a non-linear
composite microstructure under various loading conditions and analyzed in
depth regarding its capabilities and accuracy. The RVE consists of an elasto-
plastic matrix with stiff inclusions of variable size and is considered under non-
monotonic loading. The surrogate model is analyzed in terms of the number
of basis functions of the fluctuation displacement field N , number of basis
functions of the weighted stress L and the ECM integration error tolerance εECM.
Subsequently, a two-scale problem involving a porous microstructure under
non-monotonic loading conditions and varying porosities is studied to illustrate
the accuracy and speed-up of PODECM in a two-scale setting.

All experiments are defined in two dimensions under plane strain conditions.
The RVEs are assumed to be of size [0, 1]2 and all quantities are assumed to
be normalized and hence dimensionless. Since the macroscopic deformation
gradient F can always be decomposed into a rotation R and a symmetric
stretch tensor U with a polar decomposition, i.e., F = RU , see Remark 2.1.1,
it is sufficient to generate training data for the stretch tensor U , having only 3
independent components (6 in 3D). In all examples, the material parameters
λ are assumed to be constant, but the geometry can vary with geometrical
parameters µ.

To measure the quality of the approximation, the following error measures
to compare the full FE simulations against PODECM solutions are defined:

1. Error of effective stress

εP =

∑K
k=1 ||P truth(Uk)− P PODECM(Uk)||F∑K

k=1 ||P truth(Uk)||F
, (4.22)

where P PODECM(Uk) and P truth(Uk) denote the effective stress obtained
with PODECM and FE for Uk, || • ||F denotes the Frobenius norm, K is
the total number of loading steps and Uk is the applied external load at
load step k.

2. Error of fluctuation field

εw =

∑K
k=1 ||wtruth(Uk)−wPODECM(Uk)||V∑K

k=1 ||wtruth(Uk)||V
, (4.23)

where wPODECM and wtruth denote the fluctuation displacement field
obtained with PODECM and FE, and || • ||2V = (•, •)V , see Eq. (2.10).
Recall that the integral in Eq. (2.10) is defined over the parameterized
domain Ωµ.
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4.2.1 Elasto-plastic composite RVE with random inclusions

The considered RVE in this example consists of two phases, an elasto-plastic
matrix and stiff elastic inclusions. The geometry of the parent domain is shown
in Fig. 4.1a, where the volume fraction of the inclusions is 23.4%. For the
geometrical parameterization, one geometrical parameter µ = {ζ} that scales
the size of the inclusions uniformly (and is proportional to the volume fraction
of the inclusions) is introduced, see Figs. 4.1b and 4.1c showing two example
domains for distinct values of ζ. Six-noded quadratic triangular elements
are used in conjunction with three quadrature points per element. In total,
the mesh has 62194 degrees of freedom, 15450 triangular elements and 46350
quadrature points.

(a) Parent domain Ωp (b) Domain Ωµ1 (c) Domain Ωµ2

Figure 4.1: Parent with two parameterized domains and simulation mesh. (a) The parent
domain consists of a matrix material (blue) with 23 random elliptical inclusions (orange).
The problem has one geometrical parameter ζ that scales all ellipses uniformly (ζ = 1 for
parent domain). (b) A parameterized domain for ζ = 1.2 and (c) for ζ = 0.5.

For the constitutive model of both matrix and inclusion the small-strain J2-
plasticity model with linear isotropic hardening is chosen and extended to
large strains with the method presented in Cuitino and Ortiz [24]. The details
of the plasticity model are provided in Appendix A.2. For the matrix, the
following material parameters are selected: a Young’s modulus E = 10, Poisson’s
ratio ν = 0.3, yield stress σy0 = 0.2 and hardening constant H = 5. For the
inclusions, E = 100 and ν = 0.3 are selected, corresponding to a stiffness
contrast ratio of 10 between both components. Since no plastic deformation is
assumed for the inclusions, their yield stress is set to a large value such that
yielding never occurs.

Three loading Uxx, Uxy, Uyy and one geometrical ζ parameters are con-
sidered with bounds ζ ∈ [0.5, 1.2], Uxx ∈ [0.9, 1.1], Uyy ∈ [0.9, 1.1] and Uxy ∈
[−0.1, 0.1]. Through ζ, the volume fraction of the inclusions is varied from 5.85%

to 33.7%. For each sample, the macroscopic stretch tensor U =

[
Uxx Uxy

Uxy Uyy

]
is
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applied to the RVE with β(k)U , where β(k) is a piecewise linear amplitude
function with load step k ∈ {0, 1, . . . , 40}. The chosen amplitude function is
shown in Fig. 4.2 in orange, together with the evolution of the effective von
Mises stress for an example with ζ = 1.010, Uxx = 1.1, Uyy = 1.0, Uxy = 0.0,
as well as the local von Mises stress fields at steps k = {10, 20, 30, 40}. The von
Mises stress field is computed from the 1PK stress as follows: first, the Cauchy
stress is computed with σ = PF T (detF )−1; then the von Mises stress is given

by σmises =

√
3

2
Dev(σ) : Dev(σ), with Dev(σ) := σ − 1

3
tr(σ)I the deviatoric

stress. Even though only macroscopic strains of up to 10% are applied, local
strains reach values up to 83% (not shown in Fig. 4.2).

Figure 4.2: Macroscopic von Mises stress σmises and amplitude function β plotted
over k for ζ = 1.010, Uxx = 1.1, Uyy = 1.0, Uxy = 0.0. At k = {10, 20, 30, 40}, mi-
crostrucural von Mises stress fields σmises are shown. The von Mises stress is non-zero
at k = {20, 40} due to residual plastic deformation.

Results In total Ntrain = 20 samples are generated from a Sobol sequence
to train PODECM whereas 100 testing samples are generated from a uniform
distribution to test PODECM. Each sample consists of 40 snapshots for each
load step.

The accuracy and speed-up of PODECM depends on the number of basis
functions used for the fluctuation displacement field N and the number of
quadrature points Q. While N is typically chosen directly, Q depends on the
choice of the number of basis functions used for the weighted stress L and the
ECM integration error εECM.

To study the influence of L on the resulting number of quadrature points
Q and mean errors in effective stress and fluctuation field on the testing
dataset, several combinations of N and L for a fixed εECM = 10−2 are tested,
with resulting errors shown in the top row of Fig. 4.3. The projection error
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Figure 4.3: The left column shows the number of quadrature points Q obtained from
ECM for different choices of number of basis functions of fluctuation field N , number of
basis functions of weighted stress L, and ECM integration error εECM. The middle and
right columns show the average errors of the effective stress and the fluctuation field when
tested on the testing data for different choices of N , L and εECM. The top row assumes a
fixed εECM = 0.01, while the bottom row assumes a fixed L = 15.

(for N basis functions and using full integration) is shown as well. It can be
clearly seen that the number of quadrature points Q increases drastically with
increasing N and L, as more information needs to be integrated accurately. In
fact, a roughly linear relationship Q ∝ NL can be recognized. For the mean
errors, a higher L leads to better results on average, although we observe that
errors fluctuate significantly, and for some values of N a worse approximation
is obtained with a higher L. This occurs since the ECM algorithm is a greedy
algorithm, meaning that it does not necessarily find an optimal set of integration
points. When more basis functions are included into the algorithm, a completely
different set of points may be found that finally leads to a worse approximation.
It can furthermore be observed that the gap between the projection error and
the PODECM solution grows larger for increasing N . This is because the basis
functions typically become more oscillatory and difficult to approximate with
higher N , see, e.g., [45, 46], and thus require significantly more quadrature
points for a good approximation. It is interesting that the gap for the errors
in the fluctuation field are smaller than the ones in the effective stress, i.e.,
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the difference between the computed PODECM and the projection errors are
much higher for the effective stress as compared to the fluctuation field. This
happens because the ECM integration points and weights are primarily selected
to integrate the weak form accurately, and using them to compute the effective
stress introduces an additional approximation error, cf. Section 4.1.3.

Several combinations of N and εECM for a fixed L = 15 are next tested to
study the influence of εECM on the number of quadrature points and approxima-
tion errors. Obtained results are shown in the bottom row of Fig. 4.3. Similarly
to the previous analysis, a lower εECM leads to more quadrature points Q and
a lower mean error in the effective stress and fluctuation field on average, as
the integrals are approximated more accurately. Interestingly, lowering the
tolerance from 0.01 to 0.001 does not significantly improve the approximation
quality, even though substantially more quadrature points are included, mean-
ing that the errors can be attributed to the higher modes of the weighted stress
(the additional quadrature points barely contain any information). Therefore,
choosing a tolerance smaller than εECM = 0.01 leads to no improvement.

From Fig. 4.3 we further observe that the errors of the fluctuation field
are considerably higher (order of magnitude) than the errors of the effective
stresses. This results from the fact that the POD basis functions aim to minimize
the H1(Ωp) error, and thus approximate the field accurately on average rather
than locally, suggesting a favorable approximation for averaged quantities such
as the effective stress.

To test the data efficiency of PODECM, the reduced model is trained for
different numbers of training data Ntrain = {1, 3, 5, 20} with L = 20 and εECM =
0.01. The number of integration points and corresponding errors in the effective
stress and fluctuations are shown in Fig. 4.4. It can clearly be seen that
the number of integration points barely changes for different Ntrain, and that
the errors converged already for Ntrain = 3. No noticeable improvements
with Ntrain = 5 and 20 can be observed, showing that PODECM is very data
efficient. Even with Ntrain = 1, the errors in the effective stress are below 5%.

To conclude, the more basis functions N and L are used and the lower the
integration error εECM is chosen, the more accurate the final result is. However,
at the same time the surrogate model grows in size and the speed-up decreases. A
user must thus make a compromise between accuracy and cost. For this example,
the speed-up correlates nearly linearly with Q, i.e., if the number of quadrature
points is reduced by a factor of 100, this results in a speed-up of roughly 100.
In contrast, the number of basis functions N only plays a minor role for the
speed-up. For this example, use of N = 20, L = 20 and εECM = 0.01 lead to a
reduction in the number of degrees of freedom from 62194 to 20 and quadrature
points from 46350 to 212, suggesting a speed-up on the order of roughly 200.
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Figure 4.4: Errors of PODECM for different numbers of training samples. The number
of quadrature points does not change. For Ntrain = 3, the errors in effective stress and
fluctuation displacement are already converged, showing that PODECM is very data efficient.

Remark 4.2.1 Intuitively, one might consider not selecting L as an inde-
pendent parameter, but as a (non-linear) function of N with L ≥ N , since
the weighted stress acts as a non-linear function on the fluctuation field,
and thus is expected to require more basis functions. However, for L = N ,
one obtains a roughly quadratic relationship for the number of quadrature
points Q and N with Q ∝ LN = N2. If a higher number of N is necessary
to have a sufficiently large solution space, Q quickly becomes very large and
speed-ups of PODECM become very small. By treating L as an independent
parameter and allowing L < N , the resulting number of integration points can
be controlled and decreased. Furthermore, we observed in the numerical tests
that, if a maximum number of integration points is specified, we often obtained
better results for N > L rather than N ≤ L, as long as L is large enough.

4.2.2 Two-scale compression with porous microstructure

In the second example, the macroscopic structure, depicted in Fig. 4.5 together
with the employed simulation mesh, is compressed under an external load-
ing T (x). Here, we assume H = 1, W = 2, T (x) = T (1− (2x/W − 1)2), x ∈
[0,W ], with T the magnitude of the applied load. The simulation mesh has
1322 degrees of freedom, 200 8-noded quadrilateral elements, and in total 800
quadrature points. The structure is assumed to have a porous microstructure,
modelled by the parameterized RVE, shown in Fig. 4.6, and the same material
model as the matrix material in the previous example. Such microstructures
(with circular holes, i.e., a = b) have been considered in several works, see,
e.g., [9, 150, 2, 114], due to their auxetic behavior under compression, i.e.,
negative Poisson’s ratio. During compression, the center part of the material
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starts to rotate, thus pulling the material from the sides inwards. In our
work, we define two independent parameters, namely the volume fraction of
the voids, vvoid := 4πab, and the ratio of the semi-major axis b to semi-minor
axis a of each hole, κ := b/a. The semi-minor axis a and semi-major axis b de-
pend on vvoid and κ as

a(vvoid, κ) =
√

vvoid/(4πκ), (4.24)
b(vvoid, κ) = κ · a(vvoid, κ). (4.25)

(a) Macroscopic structure (b) Macroscopic simulation mesh

Figure 4.5: Geometry (a) and mesh (b) of the considered macroscopic structure. The body
is fixed on the bottom and an external compression force T is applied on the top. The mesh
consists of 1322 degrees of freedom, 200 8-noded quadrilateral elements and 4 quadrature
points per element.

(a) RVE (b) Simulation mesh

Figure 4.6: Geometry (a) and mesh (b) of the porous RVE. The elliptical holes are all
characterized by the same semi-minor axis a and semi-major axis b, and are parameterized
by the volume fraction of the pores vvoid and the ratio κ = b/a. The employed simulation
mesh has 21042 degrees of freedom, 4964 6-noded triangular elements and in total 14892
quadrature points. The parent domain corresponds to κ = 1.25 and vvoid = 0.45.
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Depending on the values of the parameters, the resulting effective properties
change significantly. To illustrate this, linear analyses of this RVE for different
parameters have been carried out, similarly to [151], where a small compression
in the y-direction with ∆uy = 0.001 has been applied, while allowing the
RVE to contract freely in the x-direction. With the resulting displacement in
the x-direction, ∆ux, the Poisson’s ratio in the initial state can be estimated as

νeff = −∆ux
∆uy

. (4.26)

Similarly, the initial Young’s modulus is estimated as

Eeff =
P yy

∆uy
, (4.27)

where P yy is the yy-component of the effective stress. For parameter ranges
vvoid ∈ [0.4, 0.5] and κ ∈ [1.01, 1.5], the estimated Poisson’s ratio and Young’s
modulus are plotted in Fig. 4.7. It can be observed that removing material (by
increasing vvoid while keeping κ fixed) or increasing κ while keeping vvoid fixed
both lead to a softer response with lower Young’s modulus. While the Poisson’s
ratio is barely affected by vvoid for values of κ close to 1, the effect becomes
apparent for larger values of κ. In particular, for κ ≥ 1.4, the Poisson’s ratio
changes from a positive value to a negative one. Therefore, by tuning vvoid and κ,
the RVE behavior can be significantly modified.

The parameters vvoid and κ are chosen to vary smoothly through the
macrostructural domain as

κ(x, y) = 1.5− (1.5− 1.01)y, (4.28)

vvoid(x, y) = 0.4 + (0.5− 0.4)(1− x)2. (4.29)

The parent mesh is selected with κ = 1.25 and vvoid = 0.45. The external
loading is applied in K = 50 load steps. In the first 25 load steps, the applied
load T increases linearly from 0 to 0.2. In the next 25 steps T is decreased
linearly from 0.2 to 0.

Results Several two-scale simulations with different PODECM surrogate
models are run and compared to the full reference FE2 solution. To compare
the accuracy of the surrogate solutions, the compliance C :=

∫
Γ T (x)uy(x)dx,

where Γ denotes the top horizontal edge of the macrostructure and uy its
vertical displacement, is computed at every load step. The compliance is an
important quantity, often employed in optimization problems. Subsequently,
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Figure 4.7: Initial effective Poisson’s ratio (a) and Young’s modulus (b) of RVE for different
values of vvoid and κ.

the relative error in compliance εC and the relative error averaged over all load
steps εC are defined as

εC,k :=
|Ck − CFE2

k |
|CFE2

k | , εC :=
1

K

K∑
n=1

εC,k, (4.30)

where the subscript k denotes the k-th load step and CFE2 is the compliance
computed with the full solution.

The tested PODECM models are generated for different numbers of train-
ing samples Ntrain and number of basis functions N . The training data is
sampled from Uxx ∈ [0.85, 1], Uyy ∈ [0.85, 1], Uxy ∈ [−0.15, 0.15], vvoid ∈
[0.4, 0.5] and κ ∈ [1.01, 1.5] with a Sobol sequence. Each sample consists of
40 load steps, where the sampled macroscopic stretch tensor is applied to the
RVE with a piecewise linear amplitude function that is linearly increased from
0 to 1 for the first 20 load steps and then linearly decreased from 1 to 0 for
the last 20 steps. For the ECM algorithm, the number of basis functions for
the weighted stress L and the integration error εECM are assumed as fixed
with L = 20 and εECM = 0.01 for all models. The exact settings for each
surrogate model are summarized in Table 4.1, alongside the averaged relative
error in compliance εC , and the run time and online speed-up in comparison to
the full FE2 solution. For comparison, the total number of degrees of freedom
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and quadrature points of the full FE model of the RVE are also provided. As
can be seen, for all surrogate models the number of quadrature points are
reduced by a factor of up to 100 which results in high speed-ups up to 100
times, while errors are below 5% for all models. By increasing N from 10 to
50 for rom_1 to rom_5, the error decreases from 4.74% to 1.54%, whereas
the speed-up reduces from 95 to 29. Including more training samples with
the same number of basis functions N = 50 (from Ntrain = 20 for rom_5
to Ntrain = 50 for rom_6) improves the error from 1.54% to 0.39% while the
speed-up remains roughly the same. This means that by increasing the sample
size, the first 50 basis functions contain more general information that result
in a better approximation. When more than 50 samples are used for rom_7
and rom_8, the error remains roughly the same, implying that 50 samples are
sufficient for this problem and including more training data does not improve
the results.

Table 4.1: Summary of results for full FE2 and different PODECM surrogate models. All
computations are executed using 20 cores of an Intel Platinum 8260. Reduced order models
are generated for different numbers of training samples Ntrain and basis functions of the
displacement N . The number of quadrature points Q follow from the ECM algorithm with a
fixed number of basis functions of the weighted stress field L = 20 and an integration error
of εECM = 0.01. All reduced order models achieve errors less than 5% with speed-ups up
to 100 times. By generating more training data and maintaining the same N (rom_5 and
rom_6), better results are achieved. However, using more than 50 training samples (rom_7
and rom_8) leads to no further improvements, suggesting that 50 samples are sufficient for
this problem.

Ntrain N Q εC run time online speed-up
full - 21042 14892 - 12573s -

rom_1 20 10 132 4.74% 133s 94.53
rom_2 20 20 259 4.66% 195s 64.48
rom_3 20 30 372 2.28% 260s 48.36
rom_4 20 40 490 2.19% 337s 37.31
rom_5 20 50 595 1.54% 438s 28.71
rom_6 50 50 591 0.39% 426s 29.51
rom_7 80 50 579 0.58% 422s 29.79
rom_8 100 50 577 0.65% 411s 30.59

In Fig. 4.8 the force-displacement curve is shown for the FE2 and a few selec-
ted surrogate solutions. The displacement is defined as the vertical displacement
at the mid point of the top edge (which is also the maximal displacement). It can
be observed that all surrogate models underpredict the displacement, indicating
that the surrogate models overpredict the stiffness of the macrostructure.

The relative error in compliance is plotted over the load steps k in Fig. 4.9.
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Figure 4.8: Force-displacement curves of two-scale simulations. The displacement ũ is defined
as the vertical displacement of the mid point on the top edge, cf. Fig. 4.5a. The structure starts
deforming plastically for T > 0.07 and a residual displacement of roughly ũ = 0.04 remains
after unloading. All surrogate models achieve accurate results, although they generally predict
a slightly stiffer response than the full FE2 solution.

For all models, the error slowly increases over k. The reason for this behavior
is that all training samples are generated for simple loading cases, where the
macroscopic stretch tensor is linearly varied in only one direction throughout the
entire simulation. In the macroscopic simulation, the macroscopic stretch tensor
for one integration point generally does not evolve along one direction, but
changes its direction continuously, leading to highly complicated deformation
paths and histories that are not included in the training data. To tackle this
problem, random loading paths during training could be used, as performed in,
e.g., [94, 141], to generate a more general surrogate model. Solely increasing
the number of samples from 20 to 50 (rom_5 to rom_6) also decreases the
observed errors to less than 1% for all load steps. This shows that PODECM
generalizes well to loading paths that are not part of the training data.

Regarding the offline run times (for one core of an Intel Platinum 8260):
computing each training sample takes approximately 2–3 minutes. With the
training data available, computing the POD for each model takes up to around
one minute. Finally, selecting the ECM points takes up to roughly two minutes
for the PODECM models with N = 50.
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Figure 4.9: Relative error εC in compliance over load step k. All surrogate models (specified
in Table 4.1) begin with a lower error which slowly grows with k. By increasing the sample size
of the training data (comparing rom_5 and rom_6), the prediction becomes more accurate
for the same number of basis functions; the errors for all load steps for rom_6 are below 1%.

4.3 Conclusions

In this chapter, we developed a reduced order model, termed PODECM, by
combining the proper orthogonal decomposition (POD), the empirical cubature
method (ECM) and a geometrical transformation method. Unlike the model
presented in Chapter 3, PODECM can treat history-dependent material beha-
vior and accelerate the microscopic problem for various material and geometrical
parameters, making it viable for two-scale optimization problems.

The framework was first tested on a single-scale problem involving an RVE
of a composite microstructure that consisted of a soft elasto-plastic matrix with
stiff inclusions of variable size, controlled by a single geometrical parameter.
With PODECM, the number of degrees of freedom and integration points was
reduced to a fraction of the full FE model while maintaining a high accuracy
in effective stress. The performance of PODECM was further evaluated for
a two-scale simulation, in which a porous microstructure, characterized by
two geometrical parameters, was considered. Both geometrical parameters
were varied throughout the macrostructure, and depending on their values, the
effective Poisson’s ratio changed from positive to negative. For this example,
different PODECM models were obtained with good accuracies (of errors less
than 1%), while achieving speed-ups up to 100.

The biggest drawback of PODECM is its intrusiveness, since it is necessary
to change both the assembly procedure and the basis functions of an existing
microscopic solver. If this is not a problem, PODECM offers several advantages
in comparison to non-intrusive methods, such as the one presented in Chapter 3.



84 Chapter 4. An intrusive reduced order model for FE2

As the underlying microscopic PDE is still being solved, only a small amount of
training data is required to construct a good approximation of the full model,
and history-dependent material behavior does not need to be specially treated,
making the framework very general.



Chapter 5

A reduced order model for
second-order computational
homogenization

The content of this chapter is based on the following publication (in preparation):

• Guo, T., Kouznetsova, V.G., Geers, M.G.D., Veroy, K., & Rokoš, O.
(n.a.). Reduced order modeling for second-order computational homo-
genization with applications to geometrically parameterized elastomeric
metamaterials. In preparation.
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In previous chapters, the reduced order modelling of first-order computational
homogenization (CH) has been treated. However, when employing first-order
CH for mechanical metamaterials, the results may be inaccurate because the
typical length scale of the microstructural features may become comparable with
that of the macrostructural engineering application, or non-local effects such as
buckling may emerge. To obtain better results, second-order CH formulations
have been considered. Similar to the first-order formulation, the two-scale
simulations are computationally expensive and must be accelerated. To the
best of our knowledge, there are no reduced order models for second-order CH
in the literature.

Here, we present a reduced order model for second-order CH, by following a
similar approach as in Chapter 4: we first use a proper orthogonal decomposition
(POD) to reduce the number of degrees of freedom, and propose a novel
hyperreduction scheme specifically tailored for this problem that identifies a
reduced number of integration points and weights.

After reviewing the theory on second-order CH and specifying the employed
formulation in Section 5.1, the proposed ROM, including the novel hyperre-
duction algorithm, is presented in Section 5.2. To validate the ROM, two
numerical examples are discussed in Section 5.3 and obtained results compared
with reference solutions in terms of accuracy and efficiency. A summary on the
findings with final remarks is provided in Section 5.4.

5.1 Second-order computational homogenization

The second-order CH formulation contains the second gradient of the displace-
ment field, thus introducing a length-scale associated with the length-scale
of the underlying unit cell, making it possible to capture size and non-local
effects [90, 136]. The formulation of the micro- and macroscopic problem as
well as their scale coupling employed in this work is discussed in the subsections
below. A schematic sketch of the two-scale problem is depicted in Fig. 5.1.

5.1.1 Macroscopic problem

In second-order CH, the macroscopic problem is based on a strain gradient
formulation [90, 136] to model non-local effects of the microstructure. Consider
a body Ω ⊂ Rd with outer boundaries ∂Ω, d = 2, 3 the space dimension, and a
position vector x ∈ Ω. The governing partial differential equation (PDE) has
the form (with body forces neglected for brevity) [69],

∇x · (P (F ,G,µ)T − (∇x ·Q(F ,G,µ))T ) = 0, (5.1)
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Figure 5.1: Two-scale formulation in second-order computational homogenization. At every
macroscopic point, the deformation gradient F and its gradient G are used to prescribe the
loading for the microscopic problem, which after solving returns an effective stress P and
couple stress Q. The parameter µ describes the shape of the RVE. More information on µ
are provided in Section 5.1.2.

where F := I +∇xu is the macroscopic deformation gradient with u(x) being
the macroscopic displacement field and I the identity tensor, G := ∇x(F

T ) is
the gradient of the (transposed) deformation gradient, i.e., a third-order tensor
with symmetry Gijk = Gkji, and µ contains additional shape parameters; P
denotes the second-order first Piola-Kirchhoff (1PK) stress tensor, and Q is a
third-order tensor, often referred to as couple or double stress tensor [90, 136].
Unlike in the first-order microscopic problem presented in Section 2.2, here we
assume that the RVE has fixed material parameters and does not depend on λ.
By multiplying Eq. (5.1) with a test function δu and utilizing the divergence
theorem, the following weak form can be derived [70],∫

Ω

(
P (F ,G,µ) : δF +Q(F ,G,µ) ... δG

)
dx

=

∫
∂ΩN

(
δu · (P −∇ ·Q) · n+ (n ·Q) : δF

)
dx

(5.2)

where δF := ∇xδu and δG := ∇x(δF
T ) are introduced, ∂ΩN denotes the

boundaries with prescribed Neumann boundary conditions, and n is the outward
unit normal vector. In addition, there are Dirichlet boundaries ∂ΩD, with
∂ΩD∩∂ΩN = ∅ and ∂ΩD∪∂ΩN = ∂Ω, where values of the displacement u and its
gradient ∇xu are prescribed. In this work, we consider only Dirichlet boundary
conditions, and thus neglect the terms on the right hand side, i.e., Eq. (5.2)
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becomes ∫
Ω

(
P (F ,G,µ) : δF +Q(F ,G,µ) ... δG

)
dx = 0. (5.3)

The relation between (P ,Q) and (F ,G,µ) is established by solving the micro-
scopic boundary value problem, which is defined on a representative volume
element (RVE) and discussed in more detail in Section 5.1.2. In particular, we
assume that µ contains parameters that describe the shape of the RVE.

In order to solve the problem in Eq. (5.3), the second gradient of u is
required. To this end, Lesicar et al. [74] employed 36 degrees of freedom (DOF)
C1-triangular elements. Wu et al. [140] utilized an enriched discontinuous
Galerkin method combined with a penalty method to enforce C1-continuity
weakly. Other works reformulate the problem in Eq. (5.3) with a mixed
formulation instead [69, 79, 113], which is used also in this work. The idea of
the mixed formulation is to introduce an independent deformation gradient
field F̂ which is coupled with the deformation gradient computed from the
displacement field through Lagrange multipliers L. With F̂ , its (transposed)
gradient Ĝ := ∇xF̂

T , and L, the problem in Eq. (5.3) can be rewritten as

G(u, F̂ ,L) :=

∫
Ω

(
P : δF +Q ... δĜ + δ(L : (F̂ − F ))

)
dx = 0, (5.4)

where arguments of P and Q have been dropped for brevity. Inserting δF =

∇xδu, δĜ = ∇xδF̂
T and

δ(L : (F̂ − F )) = (F̂ − F ) : δL+L :
(
δF̂ −∇xδu

)
(5.5)

into Eq. (5.4) yields:

G(u, F̂ ,L)

=

∫
Ω

(
(P −L) : ∇xδu+L : δF̂ +Q ... ∇xδF̂

T + (F̂ − F ) : δL
)
dx.

(5.6)

Linearization of Eq. (5.6), required by the macroscopic iterative Newton solver,
around a state (u, F̂ ,L) in directions (∆u,0,0), (0,∆F̂ ,0) and (0,0,∆L)
gives:

DG
∣∣
u,F̂ ,L

· (∆u,0,0)

=

∫
Ω

(
∇xδu : ∇FP +∇xδF̂

T ... ∇FQ− δL
)
: ∇x∆u dx, (5.7)
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DG
∣∣
u,F̂ ,L

· (0,∆F̂ ,0) (5.8)

=

∫
Ω

((
∇xδu : ∇

Ĝ
P +∇xδF̂

T ... ∇Ĝ
Q
) ... ∇x∆F̂ T + δL : ∆F̂

)
dx,

DG
∣∣
u,F̂ ,L

· (0,0,∆L) =

∫
Ω

(
−∇xδu+ δF̂

)
: ∆L dx, (5.9)

where ∇FP , ∇FQ, ∇
Ĝ
P and ∇

Ĝ
Q are the macroscopic tangents evaluated

at (F (u), Ĝ(F̂ ),µ). Given a suitable discretization for u, F̂ and L, the system
of Eqs. (5.6)–(5.9) can be solved with the finite element method, when a
constitutive relation between (P ,Q) and (F , Ĝ,µ) is established. Different
combinations of displacement, deformation gradient and Lagrange multiplier
shape functions were considered and tested in Kouznetsova et al. [69]. For the
numerical examples in this work, quadrilateral elements with eight displacement
nodes, four deformation gradient nodes and one Lagrange multiplier node per
element are chosen.

5.1.2 Parameterized microscopic problem

To evaluate P and Q and their derivatives in Eqs. (5.6)–(5.9), the microscopic
problem needs to be solved at every macroscopic integration point. Here,
we follow the formulation as presented in Kouznetsova et al. [69], where the
microscopic problem is modelled as a standard Cauchy continuum. For brevity,
a fixed macroscopic material point is assumed, and the dependence on the
macroscopic coordinates is omitted in the definition of the microscopic problem
provided below.

Consider a family of domains Ωµ ⊂ Rd, parameterized by parameters
µ ∈ Pµ with parameter space Pµ and spanned by position vectors xµ ∈ Ωµ,
see Fig. 5.2. For all µ, the outer boundaries and topology of Ωµ are assumed
to remain fixed. As a consequence, the volume |Ωµ| remains constant for all
µ. Additionally, it is assumed that there exists a parent domain Ωp := Ωµp

with µp ∈ Pµ, which can be transformed into any Ωµ with a transformation
map Φµ : Ωp → Ωµ,xp 7→ xµ, transformation gradient Fµ := ∇xpΦµ and
dxµ = |detFµ| dxp. For a fixed domain, i.e., Ωp = Ωµ, the transformations
Φµ are identity maps, with Fµ = I and |detFµ| = 1.

To obtain such transformation maps Φµ, we solve the auxiliary problem
as proposed in Section 3.1.1. The key idea of the method is to define an
auxiliary linear elasticity problem on the parent domain that can be solved for
the transformation displacement d, which can then be utilized to compute the
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transformation Φµ with Φµ(x
p) = I + d(xp). The displacement d is fixed on

the outer boundaries with zero Dirichlet boundary conditions and prescribed on
parts of the domain that are known from the parameterization (as an example,
the circular interface of Ωp in Fig. 5.2 is deformed into the elliptical interfaces
in Ωµ1 and Ωµ2). Subsequently, the auxiliary problem can be solved to find
the entire field d(xp). For all RVEs considered in this chapter, the auxiliary
problem is solved with Eaux = 1MPa and ξaux = 0.25 (defining the elasticity
tensor of the auxiliary problem).

Figure 5.2: Family of RVE domains Ωµ parameterized through parameters µ. A parent
domain Ωp can be defined which can be transformed through transformations Φµ into any of
the RVE domains Ωµ.

The microscopic displacement field u(xµ) is assumed to consist of a mean
field u(xµ) and a fluctuation field w(xµ), i.e., u(xµ) = u(xµ) +w(xµ). The
mean field u is fully prescribed through the macroscopic quantities (F , Ĝ) with

u(xµ) := (F − I)xµ +
1

2
(xµ · Ĝ) · xµ. (5.10)

Subsequently, the microscopic deformation gradient can be defined as

F := I +∇xµu = F + xµ · Ĝ +∇xµw. (5.11)

Compared to the deformation gradient in first-order formulation, cf. Eq. (2.7),
there is an additional term due to the strain gradient G, making it possible
to communicate non-local effects such as bending of the RVE. The governing
microscopic PDE is given by,

∇xµ · P T (F ) = 0, (5.12)

which can be written into the weak form by multiplying with a test function
δw and applying the divergence theorem (cf. Eq. (2.9)),

G(w) =

∫
Ωµ

∇xµδw : P
(
F + xµ · Ĝ +∇xµw

)
dxµ !

= 0, (5.13)
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where P is the microscopic second-order 1PK stress tensor, and the macroscopic
quantities (F , Ĝ) act as external forcing terms. For now, no constitutive model
at the microscale level is specified, but it is assumed that P is a non-linear
function of the deformation gradient F . The microscopic problem can thus
be stated as follows: given (F , Ĝ,µ), find w that fulfills Eq. (5.13) for all δw.
To remove the dependence of the integral on parameters µ, Eq. (5.13) can be
transformed to the parent domain with the transformation map Φµ, i.e.,

Gp(wp) =

∫
Ωp

(
(∇xpδwp)F−1

µ

)
: P p(F p) |detFµ| dxp !

= 0, (5.14)

where wp(xp) := (w ◦ Φµ)(x
p) = w(xµ), δwp(xp) := δw(xµ), P p(xp) :=

P (xµ), and

F p = F +Φµ(x
p) · Ĝ + (∇xpwp)F−1

µ . (5.15)

Hereafter, we write xµ(xp) instead of Φµ(x
p) for brevity. To find the wp that

fulfills Eq. (5.14) for all δwp, the linearization of Eq. (5.14) around a state wp

in direction ∆wp is required,

DGp|wp · (∆wp)

=

∫
Ωp

(
(∇xpδwp)F−1

µ

)
: Ap(F p) :

(
(∇xp∆wp)F−1

µ

)
|detFµ| dxp,

(5.16)

where Ap := ∇FP
p is the fourth-order stiffness tensor on the parent domain.

To ensure a proper scale transition of the kinematic quantities, different
authors derived and proposed additional constraints on the fluctuation field
wp. In Kouznetsova et al. [69], periodic boundary conditions (PBC) for wp are
assumed and the following constraints are derived for a rectangular RVE:∫

∂Ωp
top

wpdxp = 0, (5.17)∫
∂Ωp

right

wpdxp = 0, (5.18)

where ∂Ωp
top and ∂Ωp

right denote the top and right edge of the RVE Ωp,
see Fig. 5.2. In addition, all four corners of the RVE are fixed, i.e., wp = 0.
Since it is assumed that Ωµ has fixed outer boundaries for all µ, constraints
in Eqs. (5.17) and (5.18) are independent of µ. In follow-up works, other au-
thors developed slightly different formulations (see, e.g., [15, 79, 113, 140, 148]).
In [113], the authors compared different formulations and pointed out that
fixing the corners in the formulation in Kouznetsova et al. [69] leads to stress
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concentrations and artificial effects at the corners. Instead of fixing the corners,
other formulations introduce an additional equation that constrains the rigid
body motion with, ∫

Ωµ

wdxµ =

∫
Ωp

wp |detFµ| dxp = 0. (5.19)

The complete microscopic model employed in this work consists of Eqs. (5.14)–
(5.19) together with PBC for wp. Lagrange multipliers are used to enforce the
constraints in Eqs. (5.17)–(5.19) and PBC, resulting in a saddle point problem.

To solve the microscopic problem, the fluctuation displacement is typically
discretized with finite elements (FE), i.e.,

wp(xp) ≈ N(xp)w, (5.20)

where N(xp) ∈ Rd×N denotes the FE shape functions, w ∈ RN the coefficients
of the discretized displacement field, and N the total number of DOFs. Sub-
sequently, the weak form in Eq. (5.14), together with the constraints, can be
written as

f(w) +CTm = 0,

Cw = 0,
(5.21)

where f ∈ RN is the global internal force vector, the constraint matrix C ∈
RNc×N is derived from the constraints in Eqs. (5.17)–(5.19) and PBC, with
Nc the number of constraint equations, and m ∈ RNc are the corresponding
Lagrange multipliers. Using the Newton method, the non-linear system of
equations in Eq. (5.21) can be solved for w and m,[

K(wk) CT

C 0

] [
∆w
m

]
=

[
−f(wk)

0

]
,

wk+1 = wk +∆w,

(5.22)

where K ∈ RN×N is the global stiffness matrix computed from Eq. (5.16), and
k is the Newton iteration number. Eq. (5.22) is iterated with increasing k until∥∥f(wk) +CTm

∥∥
2
≤ εnewton with εnewton a user-defined tolerance. For more

information on the FE method and discretization of weak forms, we refer to [6].

5.1.3 Effective quantities

After the microscopic problem has been solved and a solution w∗p obtained,
the effective stress P , couple stress Q and their corresponding derivatives
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with respect to F and Ĝ must be computed. For conciseness of notation, the
following microscopic quantities are introduced:

F ∗p := F + xµ · Ĝ + (∇xpw∗p)F−1
µ , (5.23)

P ∗p := P p(F ∗p), (5.24)
A∗p := Ap(F ∗p), (5.25)

which correspond to the microstructural deformation gradient, 1PK stress
and related stiffness tensors, evaluated at the solution on the parent domain.
Expressions for the effective stress P and couple stress Q were derived in [70,
Section 3.3], which after transformation to the parent domain read,

P :=
1

|Ωp|

∫
Ωp

P ∗p |detFµ| dxp, (5.26)

Q :=
1

|Ωp|

∫
Ωp

1

2

(
P ∗pT ⊗ xµ + xµ ⊗ P ∗p

)
|detFµ| dxp. (5.27)

The effective stiffness components, derived by differentiating the above stress
and couple stress quantities then read,

∂P ij

∂F kl

=
1

|Ωp|

∫
Ωp

∂P ∗p
ij

∂F kl

|detFµ| dxp, (5.28)

∂P ij

∂Ĝmno

=
1

|Ωp|

∫
Ωp

∂P ∗p
ij

∂Ĝmno

|detFµ| dxp, (5.29)

∂Qijk

∂Fmn

=
1

|Ωp|

∫
Ωp

1

2

(
∂P ∗p

ji

∂Fmn

xµk + xµi
∂P ∗p

jk

∂Fmn

)
|detFµ| dxp, (5.30)

∂Qijk

∂Ĝmno

=
1

|Ωp|

∫
Ωp

1

2

(
∂P ∗p

ji

∂Ĝmno

xµk + xµi
∂P ∗p

jk

∂Ĝmno

)
|detFµ| dxp. (5.31)

In the above,

∂P ∗p
ij

∂F kl

= A∗p
ijmn

(
δmkδnl +

∂

∂F kl

(
∂w∗p

m

∂xp
r

)
F−1
µ,rn

)
, (5.32)
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and

∂P ∗p
ij

∂Ĝmno

= A∗p
ijkl

∂
(
xµr Ĝrkl

)
∂Ĝmno

+
∂

∂Ĝmno

(
∂w∗p

k

∂xp
s

)
F−1
µ,sl


= A∗p

ijkl

(
xµr δrmδknδlo +

∂

∂Ĝmno

(
∂w∗p

k

∂xp
s

)
F−1
µ,sl

)

= A∗p
ijkl

(
xµmδknδlo +

∂

∂Ĝmno

(
∂w∗p

k

∂xp
s

)
F−1
µ,sl

)
.

(5.33)

To determine
∂

∂F kl

(
∂w∗p

m

∂xp
r

)
and

∂

∂Ĝmno

(
∂w∗p

k

∂xp
s

)
, Eq. (5.14) is differentiated

with respect to F and Ĝ to derive linear tangent problems that can be solved
to find the corresponding sensitivities. As an example, for one particular
component F kl (where the indices k and l are assumed to be temporarily fixed),
the differentiation yields

∂Gp(w∗p)

∂F kl

=

∫
Ωp

(
(∇xpδwp)F−1

µ

)
:
∂P ∗p

∂F kl

|detFµ| dxp = 0, (5.34)

which can be rearranged with Eq. (5.32) as,∫
Ωp

(
(∇xpδwp)F−1

µ

)
: A∗p :

(
(∇xpqkl)F

−1
µ

)
|detFµ| dxp

= −
(∫

Ωp

(
(∇xpδwp)F−1

µ

)
: A∗p |detFµ| dxp

)
: Ekl

(5.35)

where a new auxiliary vector field qkl :=
∂w∗p

∂F kl

is defined, reflecting the sensit-

ivity of the microfluctuation field with respect to the change of the macroscopic
deformation gradient, and Ekl ∈ Rd×d is a second-order tensor with all entries
zero except for the kl-th entry which is 1. The linear problem of Eq. (5.35)
is solved for all combinations k, l = 1, . . . , d to obtain qkl for each component
of F . The same procedure is followed for Ĝ. With an auxiliary vector field

qmno :=
∂w∗p

∂Ĝmno

, the differentiation of Eq. (5.14) for one particular component

Ĝmno (where the indices m, n and o are assumed to be temporarily fixed) yields,
together with Eq. (5.33),∫

Ωp

(
(∇xpδwp)F−1

µ

)
: A∗p :

(
(∇xpqmno)F

−1
µ

)
|detFµ| dxp

= −
(∫

Ωp
xµ ⊗

(
(∇xpδwp)F−1

µ

)
: A∗p |detFµ| dxp

)
... Emno,

(5.36)
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where Emno ∈ Rd×d×d is a third-order tensor with all entries zero except for
the mno-th entry which is 1. The linear problem of Eq. (5.36) is then solved
for all combinations m,n, o = 1, . . . , d to obtain qmno for each component of Ĝ.

5.2 Reduced order modeling

Since the microscopic problem is solved at every macroscopic integration point,
its solution must be efficient. Due to the often complicated RVE geometry,
a fine discretization (using, e.g., finite elements) is required, resulting in a
large number of DOFs and integration points, which entail a costly solution.
Furthermore, computing the effective quantities for a fine RVE mesh presents
another computationally expensive operation. To construct a reduced order
model (ROM) for a more efficient solution, we employ two reduction techniques:
(1) we utilize proper orthogonal decomposition (POD) to reduce the number
of DOFs in Section 5.2.1; (2) to find a more efficient integration scheme, we
propose in Section 5.2.2 a novel hyperreduction algorithm that uses ideas of the
empirical cubature method [48], which is specifically suited for the second-order
CH formulation.

5.2.1 Proper orthogonal decomposition

To reduce the number of DOFs, the fluctuation displacement field wp is ap-
proximated with a reduced basis [52, 103], i.e.,

wp ≈
N∑

n=1

anvn, (5.37)

where N is typically much smaller than N , i.e., N ≪ N . The global basis
functions, {vn}Nn=1, are obtained by applying POD to a set of pre-computed
snapshots of wp for different parameter values (F , Ĝ,µ). Since each of the
basis functions is computed from a linear combination of pre-computed periodic
solutions that fulfill the constraints in Eqs. (5.17)–(5.19), every basis function
is periodic and also fulfills Eqs. (5.17) and (5.18). This implies that any
solution wp that is represented by Eq. (5.37) always fulfills these conditions.
However, the basis functions will only fulfill the constraint in Eq. (5.19) if a fixed
geometry is assumed for the RVE, i.e., µ is constant. For varying geometries,
the constraint is violated due to the influence of |detFµ|. Nevertheless, in
our numerical examples, tests with and without enforcing Eq. (5.19) through
Lagrange multipliers were run and only insignificant differences of the solutions
were observed. For that reason, we do not enforce Eq. (5.19) for the ROM.
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This has the added advantage that no constraints have to be considered for
the ROM and, thus, more efficient solvers for the resulting system of linear
equations can be utilized.

By inserting Eq. (5.37) into Eqs. (5.14) and (5.16) and assuming a Galerkin
projection, the components of the internal force f ∈ RN and global stiffness
matrix K ∈ RN×N can be computed:

fi(a) :=

∫
Ωp

(
(∇xpvi)F

−1
µ

)
: P p(F p) |detFµ| dxp, (5.38)

Kij(a) :=

∫
Ωp

(
(∇xpvi)F

−1
µ

)
: Ap(F p) :

(
(∇xpvj)F

−1
µ

)
|detFµ| dxp, (5.39)

F p(a) = F + xµ · Ĝ +

(
N∑

n=1

an∇xpvn

)
F−1
µ , (5.40)

for all i, j = 1, . . . , N . The column matrix a = [a1, . . . , aN ]T contains the
unknown coefficients to be solved for.

5.2.2 Hyperreduction

While the reduced system of Eqs. (5.38) and (5.39) only has N DOFs, com-
puting the integrals in Eqs. (5.38) and (5.39) (as well as Eqs. (5.26)–(5.33),
(5.35) and (5.36) for the effective quantities) requires integration over the whole
full finite element mesh (typically with many Gauss quadrature points). To
accelerate this computation, a more efficient integration scheme (i.e., fewer
integration points and corresponding weights) is sought that closely approxim-
ates the numerical integration with Gaussian quadrature of the following four
quantities:

• Internal force f = [f1, . . . , fN ]T in Eq. (5.38):

fi =

∫
Ωp

(
(∇xpvi)F

−1
µ

)
: P p |detFµ| dxp

=

∫
Ωp

∇xpvi : W
pdxp,

(5.41)

for all i = 1, . . . , N and where the weighted stress W p := P pF−T
µ |detFµ|

is defined (in analogy with Eq. (3.6)).
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• Effective stress P in Eq. (5.26):

P =
1

|Ωp|

∫
Ωp

P p |detFµ| dxp

=
1

|Ωp|

∫
Ωp

W pF T
µ dxp

=
1

|Ωp|

∫
Ωp

W pdxp,

(5.42)

where in the last line the invariance of the integral with respect to F T
µ was

used, which was proven in Appendix C. This implies that the accurate
integration of the effective stress is equivalent to the accurate integration
of the weighted stress.

• Effective couple stress Q in Eq. (5.27):

Q =
1

|Ωp|

∫
Ωp

1

2

(
P pT ⊗ xµ + xµ ⊗ P p

)
|detFµ| dxp

=
1

|Ωp|

∫
Ωp

Ypdxp,

(5.43)

where the weighted couple stress Yp :=
1

2

(
P pT ⊗ xµ + xµ ⊗ P p) |detFµ|

is defined.

• Volume:

V := |Ωp| =
∫
Ωp

dxp. (5.44)

Even though the integration of the volume does not necessarily have to be
accurate, it helps to stabilize the non-negative least squares problem used to
find the new integration points, as seen below. In particular, it leads to fewer
weights that are equal to 0.

Algorithm To find an efficient integration scheme, we use ideas from the
empirical cubature method (ECM), which was previously applied to find in-
tegration points and weights for the efficient integration of the internal force,
as proposed by Hernández et al. [48] and extended to varying geometries
in Chapter 4. In the first step, similarly to the fluctuation field wp, snapshots
of the weighted stress W p and weighted couple stress Yp are collected for
different parameter values (F , Ĝ,µ). Utilizing POD, two sets of basis functions
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for W p and Yp, {Bm}Mm=1 and {Hl}Ll=1, are found, with which W p and Yp

can then be approximated, i.e.,

W p ≈
M∑

m=1

αmBm, (5.45)

Yp ≈
L∑
l=1

βlHl. (5.46)

Inserting Eqs. (5.45) and (5.46) into Eqs. (5.41)–(5.43) yields

fi ≈
M∑

m=1

αm

∫
Ωp

∇xpvi : Bmdxp, ∀i = 1, . . . , N, (5.47)

P ≈
M∑

m=1

αm
1

|Ωp|

∫
Ωp

Bmdxp, (5.48)

Q ≈
L∑
l=1

βl
1

|Ωp|

∫
Ωp

Hldx
p. (5.49)

Since Eqs. (5.47)–(5.49) should be accurately integrated for any choice of coeffi-
cients αm and βl, all the occurring integrals in the sums should be approximated
accurately. Together with the volume equation in Eq. (5.44), integration points
and weights are sought that approximate these NM + d2M + d3L+ 1 integrals
accurately. The factors d2 and d3 arise due to the number of components of P
and Q.

Assume for now the known set of Gaussian integration points {x̂q, ŵq}Q̂q=1

corresponding to the fully resolved discretization, where Q̂ is the total number
of Gauss integration points, x̂q their positions and ŵq their weights. By defining

1 :=
[
1, . . . , 1

]T ∈ RQ̂, (5.50)

and the flattened basis functions Bm ∈ Rd2 and Hl ∈ Rd3 (in 2D, i.e., d = 2),

Bm :=
[
Bm,11, Bm,12, Bm,21, Bm,22

]T
, (5.51)

Hl :=
[
Hl,111,Hl,112,Hl,121,Hl,122,Hl,211,Hl,212,Hl,221,Hl,222

]T
, (5.52)

for all m = 1, . . . ,M and l = 1, . . . , L, the numerical approximation of the
NM + d2M + d3L+ 1 integrals with the full Gauss quadrature can be written
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in algebraic form 
A1

A2

A3

1T


︸ ︷︷ ︸
=:A

 ŵ1
...

ŵQ̂


︸ ︷︷ ︸
=:ŵ

=


b1

b2

b3

V


︸ ︷︷ ︸
=:b

, (5.53)

where

b1 =



∫
Ωp

∇xpv1 : B1dx
p

...∫
Ωp

∇xpv1 : BMdxp

...∫
Ωp

∇xpvN : B1dx
p

...∫
Ωp

∇xpvN : BMdxp



∈ RNM , (5.54)

b2 =


∫
Ωp

B1dx
p

...∫
Ωp

BMdxp

 ∈ Rd2M , (5.55)

b3 =


∫
Ωp

H1dx
p

...∫
Ωp

HLdx
p

 ∈ Rd3L. (5.56)
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and

A1 =



(∇xpv1 : B1)|x̂1
. . . (∇xpv1 : B1)|x̂Q̂

...
...

(∇xpv1 : BM )|x̂1
. . . (∇xpv1 : BM )|x̂Q̂

...
...

(∇xpvN : B1)|x̂1
. . . (∇xpvN : B1)|x̂Q̂

...
...

(∇xpvN : BM )|x̂1
. . . (∇xpvN : BM )|x̂Q̂


∈ RNM×Q̂, (5.57)

A2 =

B1(x̂1) . . . B1(x̂Q̂)
...

...
BM (x̂1) . . . BM (x̂Q̂)

 ∈ Rd2M×Q̂, (5.58)

A3 =

H1(x̂1) . . . H1(x̂Q̂)
...

...
HL(x̂1) . . . HL(x̂Q̂)

 ∈ Rd3L×Q̂. (5.59)

The system in Eq. (5.53) can be equivalently rewritten into
Â1

Â2

Â3

1T


︸ ︷︷ ︸
=:Â

ŵ =


0
0
0
V


︸ ︷︷ ︸
=:b̂

, (5.60)

with

Â1 = A1 −
1

V
b1 ⊗ 1, (5.61)

Â2 = A2 −
1

V
b2 ⊗ 1, (5.62)

Â3 = A3 −
1

V
b3 ⊗ 1, (5.63)

which is convenient for the definition of residuals of the algorithm discussed
below.

The goal now is to select a subset of integration points {xq}Qq=1 from the

set of all integration points, i.e., {xq}Qq=1 ⊂ {x̂q}Q̂q=1, such that Q≪ Q̂, with
corresponding weights {wq}Qq=1 obtained by minimizing the following weighted
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non-negative least squares residual,

wLS = argmin
w≥0

∣∣∣∣∣∣b̂− Â•Iw
∣∣∣∣∣∣
Σ

= argmin
w≥0

∣∣∣∣∣∣Âŵ − Â•Iw
∣∣∣∣∣∣
Σ

= argmin
w≥0

||r̂(w)||Σ ,

(5.64)

where ∥a∥Σ := aTΣa and the residual

r̂(w) := Âŵ − Â•Iw (5.65)

are defined, I denotes a set of non-repeating indices with |I| = Q and Â•I is
the submatrix of Â with Q selected columns according to the entries of I. The
matrix Σ is a weighting matrix with a block diagonal structure

Σ =


c1Σ1 0 0 0
0 c2Σ2 0 0
0 0 c3Σ3 0
0 0 0 Σ4

 , (5.66)

where each block corresponds to one of the approximated quantities and is
defined as,

Σ1 = diag(σw
1 σW

1 , . . . , σw
1 σW

M , . . . , σw
NσW

1 , . . . , σw
NσW

M ) ∈ RNM×NM , (5.67)

Σ2 = diag(σW
1 , . . . , σW

1︸ ︷︷ ︸
d2 times

, . . . , σW
M , . . . , σW

M︸ ︷︷ ︸
d2 times

) ∈ Rd2M×d2M , (5.68)

Σ3 = diag(σY
1 , . . . , σY

1︸ ︷︷ ︸
d3 times

, . . . , σY
L , . . . , σY

L︸ ︷︷ ︸
d3 times

) ∈ Rd3L×d3L, (5.69)

Σ4 = diag(1) ∈ R1×1. (5.70)

The entries σw
i , σW

m , σY
l for all i = 1, . . . , N , m = 1, . . . ,M , and l = 1, . . . , L

correspond to the ordered normalized singular values of the POD of the fluc-
tuation field wp, weighted stress W p and weighted couple stress Yp, with
σw
1 = σW

1 = σY
1 = 1. The parameters c1, c2, c3 enable control over the im-

portance of each of the approximated quantities. Their influence is illustrated
in Section 5.3. The blocks of the weighting matrix Σ are chosen in this fashion to
promote the integration scheme to approximate the basis functions correspond-
ing to the larger singular values more accurately than the ones corresponding
to smaller singular values. The indices in I are selected one by one, similarly
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to the greedy algorithm presented in [48]. The exact algorithm on the selection
is provided in Algorithm 3. For the algorithm, the residual r̂ is split into four
parts,

r̂ =
[
r̂T1 , r̂

T
2 , r̂

T
3 , r̂

T
4

]T (5.71)

where r̂i for i = 1, . . . , 4 are the residuals for each quantity. Independent
residuals are introduced to check that each quantity is approximated accurately
up to a precision depending on the choice of tolerances ε1, ε2, ε3, ε4, with,

r1 :=
||r̂1||Σ1

trΣ1
< ε1, r2 :=

||r̂2||Σ2

trΣ2
< ε2,

r3 :=
||r̂3||Σ3

trΣ3
< ε3, r4 :=

||r̂4||Σ4

V
< ε4,

(5.72)

where ri for i = 1, . . . , 4 are the standardized norms of the residuals. As
will be shown in Section 5.3, all ri generally decay with different rates, which
can, however, be tuned with the parameters c1, c2, c3. The lowest number
of quadrature points can be achieved when all residuals reach the desired
tolerances at the same time. This will be demonstrated in Section 5.3.
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Algorithm 3 Integration point selection algorithm

Offline Stage: Â, b̂,Σ1,Σ2,Σ3,Σ4, c1, c2, c3, ε1, ε2, ε3, ε4, kmax
Online Stage: wLS, I

Initialize empty list of selected columns I ← ∅
Initialize list of candidate indices C ← {1, . . . , Q̂}
Set iteration number k ← 0
Set initial residual r̂← b̂
while k < kmax do

k ← k + 1
Find the column i of Â with

i = argmax
j∈C

ÂT
•jΣr̂√

ÂT
•jΣÂ•j

Add selected index I ← I ∪ {i}
Remove selected index from candidates C ← C \ {i}
Solve Eq. (5.64) for wLS

Compute residuals r̂i according to Eq. (5.65)
if all conditions in Eq. (5.72) are fulfilled then

return wLS, I ▷ Algorithm is converged
end if

end while
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5.3 Numerical examples

To examine and illustrate different features of the proposed ROM, two macro-
scopic example problems with a parameterized microstructure are studied in
two dimensions and under plane strain conditions. The results are compared
against the full two-scale second-order CH solution (later referred to as CH2)
as well as the direct numerical simulation (DNS), where the microstructure is
fully resolved at the macroscale. The ROM is discussed in detail in the first
example, whereas the second example shows a possible application, in which a
full DNS might not be feasible anymore (especially in three dimensions), but
with the ROM an excellent approximation can be computed in a reasonable
amount of time.

For both examples, a metamaterial-based RVE with four identical holes is
selected, motivated by Specimen 1 in Bertoldi et al. [9]. The size of the RVE
is 2mm× 2mm and the local coordinate system is chosen in the center of the
domain, i.e., the domain of the RVE is given by [−1mm, 1mm]×[−1mm, 1mm].
Each hole is described by a cubic B-spline with eight control points, of which the
coordinates are parameterized by one geometrical parameter µ = {ζ}. For the
top right hole, the coordinates (in mm) of the control points are (0.05 + ζ, 0.5),
(0.125 − ζ, 0.125 − ζ), (0.5, 0.05 + ζ), (0.875 + ζ, 0.125 − ζ), (0.95 − ζ, 0.5),
(0.875 + ζ, 0.875 + ζ), (0.5, 0.95− ζ), (0.125− ζ, 0.875 + ζ). The coordinates of
the control points for the other holes are obtained by shifting the coordinates
of the top right hole by 1mm in the x- and/or y-direction, and the same ζ is
assumed for each hole. The geometry of the RVE is shown for different values
of ζ = {−0.075mm,−0.035mm, 0.025mm, 0.055mm} in Fig. 5.3. The parent
domain Ωp, chosen with ζ = 0.025mm, and its simulation mesh, consisting of
4882 DOFs and 1066 six-noded triangular elements, are shown in Fig. 5.3c. A
mesh convergence study was conducted to ensure that the effective quantities
obtained with this mesh are converged with respect to the element size. Note
that the control points (in orange color) are allowed to lie outside the RVE
domain, as long as the resulting B-spline curves do not intersect with the outer
boundary of the RVE.

Depending on ζ, the shape of the holes changes from a circular shape to a
square-like one. For circular holes, it is known that, due to the symmetry, the
RVE buckles locally under compression and exhibits auxetic behavior [9], i.e.,
under uniaxial compression in one direction the RVE shortens in the perpen-
dicular direction. On the other hand, square-like holes promote global buckling
on the macroscale instead of local buckling. This is illustrated in Section 5.3.1,
where significantly different behaviors of the macrostructure are observed when
varying ζ.
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Figure 5.3: Example geometries for (a) ζ = −0.075mm, (b) ζ = −0.035mm, (c) ζ =
0.025mm, and (d) ζ = 0.055mm. The control points defining the hole shapes are shown in
orange and the matrix material in blue. Depending on ζ, the shape of the holes is more
circular or square-like, and the RVE more prone to local or global buckling. The parent
domain Ωp is chosen for ζ = 0.025mm with a simulation mesh, consisting of 1066 six-noded
triangular elements with 4882 DOFs.

The RVE material is modelled as a hyperelastic Mooney–Rivlin material
with strain energy density function

W (F ) = C1(I1 − 3) + C2(I1 − 3)2 − 2C1 log J +
K

2
(J − 1)2, (5.73)

where I1 := trC is the first invariant of the right Cauchy–Green tensor C :=
F TF and J = detF characterizes the volume change. The constants C1, C2

and K are material parameters, which are set to C1 = 0.55MPa, C2 = 0.3MPa,
and K = 55MPa, according to the experimental data in Bertoldi et al. [8].
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5.3.1 Uniaxial compression of perforated plate

In the first example, uniaxial compression of a rectangular perforated plate
of size W × H (width W = 6mm, height H = 20mm) in the longitudinal
direction is considered. The top edge is compressed up to 7.5% strain, while
the bottom edge is fixed, and the geometrical parameter ζ is assumed to be
constant throughout the macrostructure. As the reference solution, full DNS
solutions, where the microstructure is fully resolved and for which triangular
six-noded elements are used, are computed for various values of ζ. For each
DNS model, the number of elements is approximately 32,000 and number of
DOFs 140,000. For ζ = {−0.035mm, 0.03mm}, the undeformed state together
with the deformed solutions at 4% and 7.5% strain are shown in Fig. 5.4. While
for ζ = −0.035mm the macrostructure first buckles locally (patterning of holes)
and then globally (whole macrostructure buckles), for ζ = 0.03mm the structure
first buckles globally and then locally, implying that the overall behavior of the
macrostructure changes drastically for different ζ.

(a) ζ = −0.035mm (b) ζ = 0.03mm

Figure 5.4: DNS solutions for ζ = −0.035mm in (a), ζ = 0.03mm in (b). In each panel,
the undeformed (left) and deformed states at 4% (middle) and 7.5% (right) compression are
shown. For ζ = −0.035mm the structure first buckles locally and then globally, while for
ζ = 0.03mm the structure first buckles globally with subsequent local patterning.

For the homogenized plate, a uniform mesh, consisting of two elements in
the horizontal and four elements in the vertical direction with a total of 32
quadrature points, is chosen, amounting to 32 microscopic problems that must
be solved for each macroscopic Newton iteration. Regarding the boundary
conditions, the displacement is fixed at the bottom edge and prescribed at the
top edge with value ũ, while the xx- and yx-components of the deformation
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gradient are fixed to F̂ xx = 1 and F̂ yx = 0 at the top and bottom edge. To
prevent zero energy modes corresponding to the components F̂ xy and F̂ yy, the
deformation gradient at the bottom left point is fully fixed with F̂ = I.

To construct the ROM, training data must be generated by solving the
microscopic problem for different input parameters (F , Ĝ,µ), which span an
11-dimensional parameter space in 2D. In total, 100 samples are generated for
the loading parameters (F , Ĝ) via a Sobol sequence sampling with parameter
bounds provided in Table 5.1. Since the macrostructure is compressed up to
7.5% in y-direction and locally higher deformations might occur, the lower
bound for F yy − 1 is chosen as −0.1. Since the RVE behaves auxetically, the
lower bound for F xx − 1 is also assumed to be −0.1. The upper bound for
both F xx − 1 and F yy − 1 is chosen as 0.02 to capture some tensile behavior
of the RVE. Due to the global buckling, large shear strains might occur and
bounds of [−0.1, 0.1] are chosen for F xy and F yx. Bounds for Ĝ are difficult to
estimate without prior knowledge. Here, every component is assumed to range
from −0.05mm−1 to 0.05mm−1, which for the RVE size of 2mm× 2mm can
result in maximal deformations in the range of [−0.1, 0.1] with F − I = xp · Ĝ
and xp ∈ Ωp = [−1mm, 1mm]2.

Subsequently, all the samples are divided into five groups, each with 20
samples and assigned one value of ζ = {−0.05mm,−0.025mm, 0.0mm, 0.025mm,
0.05mm}. For each sample, the macroscopic loads are applied to the RVE with
(tF , tĜ), where t ∈ [0, 1] is increased linearly from 0 to 1 in 20 equidistant
load steps, resulting in 20 snapshots per sample. In total, 2000 snapshots are
obtained which are all used for the construction of the ROM.

Table 5.1: Parameter bounds used for sampling training data for the ROM. The bounds
for F are motivated by the applied macroscopic compression loads and the auxeticity of the
RVE. The bounds for Ĝ are chosen randomly.

F xx − 1 F xy F yx F yy − 1
[−0.1, 0.02] [−0.1, 0.1] [−0.1, 0.1] [−0.1, 0.02]

Ĝxxx [mm−1] Ĝxxy [mm−1] Ĝxyx [mm−1] Ĝxyy [mm−1] Ĝyxy [mm−1] Ĝyyy [mm−1]

[−0.05, 0.05] [−0.05, 0.05] [−0.05, 0.05] [−0.05, 0.05] [−0.05, 0.05] [−0.05, 0.05]

Results The accuracy and efficiency of the ROM depends on several factors:

• the number of basis functions for the fluctuation displacement N , the
weighted stress M and the weighted couple stress L,
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• the error tolerances ε1, ε2, ε3 and ε4, and

• the hyperparameters c1, c2 and c3 that control the weighting matrix Σ of
the weighted least squares problem in Eqs. (5.64) and (5.66).

To choose a reasonable amount of basis functions, the singular values of POD
are often utilized, as they give an indication on the information loss due to the
reduction. Given the ordered singular values {σi}NPOD

i=1 of POD, a criterion can
be defined with:

1−
∑NPOD

i=1 σ2
i∑NS

i=1 σ
2
i

< EPOD, (5.74)

where NS denotes the total number of snapshots and EPOD is a user-specified
tolerance. The number of basis functions is then selected to be equal to the
smallest NPOD, for which Eq. (5.74) is fulfilled. For the weighted stress and
couple stress, good results were obtained with EPOD = 5 × 10−3, for which
M = 28 and L = 28 were found. For the fluctuation field, three values of
EPOD = 1 × 10−4, 1 × 10−5 and 1 × 10−6 were considered, which resulted in
N = 48, 78 and 112 basis functions.

Regarding the error tolerances ε1, ε2, ε3 and ε4, numerical tests for different
values were carried out and a good balance in terms of accuracy and efficiency
was found for ε1 = ε2 = ε3 = ε4 = 1× 10−4.

The choice of the hyperparameters c1, c2 and c3 affects the rates with which
each of the standardized norm of residuals r1, r2, r3 and r4 (see Eq. (5.72) for
the definition) decreases over the number of selected quadrature points Q. In
general, the lowest number of quadrature points can be found when c1, c2 and
c3 are tuned such that all ri fall below their corresponding tolerances at roughly
the same time. In Fig. 5.5, the decay of each ri over the selected number of
quadrature points with N = 48, M = 28, L = 28 and ε1 = ε2 = ε3 = ε4 =
1 × 10−4 is shown for different choices of c1, c2 and c3. For c1 = c2 = c3 = 1
(see Fig. 5.5a), it can be clearly seen that r1 drops much more slowly than r2,
r3 and r4, resulting in a total of Q = 539 quadrature points. When increasing
c1 to 10 (see Fig. 5.5b), r1 drops more quickly, ending up in a total number of
Q = 362 quadrature points. Finally, for values of c1 = 10, c2 = 1.6 and c3 = 1.1
(see Fig. 5.5c) all tolerances are achieved at roughly the same time with only
Q = 296 quadrature points. For N = 78 and 112, Q = 318 and 337 quadrature
points are found, when all other hyperparameters are kept constant.

To evaluate the accuracy of the ROM for N = 48, 78 and 112 basis func-
tions for the displacement, the two-scale compression of the perforated plate
is solved for ζ = −0.035mm (recall that the training data was sampled for
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Figure 5.5: Decay of standardized norm of residuals r1, r2, r3 and r4 over the number of
selected integration points with N = 48, M = 28, L = 28 and ε1 = ε2 = ε3 = ε4 = 1× 10−4.
The hyperparameters c1, c2 and c3 control the rate of decay for each ri, which can result in
completely different numbers of quadrature points: (a) Q = 539, (b) Q = 362, whereas (c)
only Q = 296 quadrature points are selected.

ζ = {−0.05mm,−0.025mm, 0.0mm, 0.025mm, 0.05mm}), and the total result-
ing reaction force R acting on the top edge is plotted over the prescribed
displacement ũ and compared to the DNS, CH2 and POD solutions in Fig. 5.6
(R and ũ are normalized with the width W and height H of the plate to yield
nominal quantities). Here, POD denotes the solution obtained with the POD
basis in Eq. (5.37), but with full integration of the reduced system, i.e., comput-
ing the integrals in Eqs. (5.38) and (5.39) (as well as Eqs. (5.26)–(5.33), (5.35)
and (5.36)) with Gauss quadrature. It can clearly be seen that the ROM closely
follows the POD solution, showing that the reduced integration is very accurate.
It is also clear that the prebuckling stage and buckling point predicted by CH2
are sufficiently accurate already for N = 48, but small deviations from the CH2
solution can be observed for increasing ũ in the postbuckling stage. This error
is decreased by increasing N to 78 or 112. Moreover, it can be observed that
the CH2 solution predicts a slightly higher prebuckling stiffness than the DNS,
which was also observed in [125], and is unable to predict the second (global)
buckling point (at around 6% strain), illustrating some modeling limitations of
the CH2 scheme. A full two-scale simulation based on first-order CH (FE2) was
also run, however, the solver was unable to converge when reaching buckling,
demonstrating issues of FE2 for buckling problems and advantages of the CH2
scheme.

In Fig. 5.7, a similar comparison is performed for ζ = 0.03mm with N = 48,
78 and 112. It can be clearly seen that the POD and ROM solutions match
well for all N , but both overestimate the (post-)buckling behavior of the CH2
solution. Even though with increasing N the buckling point is predicted more
accurately, the postbuckling stiffness is captured poorly. This suggests that
the randomly generated training data does not properly cover the kinematics
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Figure 5.6: Force-displacement curves for ζ = −0.035mm (i.e., circular holes buckling first
locally) for different numbers of basis functions N for the fluctuation field. The ROM solution
closely follows the POD solution, implying that the proposed hyperreduction algorithm yields
accurate results. For increasing number of fluctuation displacement basis functions N , the
POD and ROM solution both approach that of CH2.

during the postbuckling stage and more representative training data is required
for good approximations. Compared to the DNS solution, CH2 overpredicts
the buckling point and the prebuckling stiffness. Nevertheless, the postbuckling
stiffness is captured quite accurately. Moreover, CH2 is again unable to detect
the second buckling which occurs at around ũ/H = 0.042. For this example,
the FE2 solver was also run, which again was unable to converge at the buckling
point.
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Figure 5.7: Force-displacement curves for ζ = 0.03mm (i.e., square-like holes buckling first
globally) for different numbers of basis functions N for the fluctuation field. Similarly to
ζ = −0.035mm, the ROM solution closely follows the POD solution. Both POD and ROM
solutions approximate the CH2 solution poorly, implying that the randomly sampled training
data is not representative for the global buckling of the macrostructure.

To demonstrate that the results for ζ = 0.03mm are improved by employing
a more representative training dataset, we generated another training dataset
by employing the following procedure:

1. First, we solved the full CH2 problem with a coarsened RVE mesh (142
six-noded elements with 746 DOFs, see Fig. 5.8a) for ζ = {−0.05mm,
−0.025mm, 0.0mm, 0.025mm, 0.05mm}.
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2. This way, for each value of ζ a loading trajectory of values of {(F , Ĝ)}
for each of the 32 macroscale quadrature points is collected.

3. For each ζ, the microscopic problem is solved with the fine mesh (see
Fig. 5.3c) along all 32 trajectories {(F , Ĝ)}, and snapshots of the fluc-
tuation displacement wp, weighted stress W p and couple stress Yp are
gathered.

4. All snapshots computed with the fine mesh are utilized to construct the
ROM.

The resulting ROM for N = 48 displacement basis functions has Q = 282 quad-
rature points (with M = 28 and L = 28), and the resulting force-displacement
curves for ζ = −0.035mm and ζ = 0.03mm are shown in Figs. 5.8b and 5.8c.
The ROM solution approaches the CH2 solution nearly perfectly for both cases,
showing the importance of the training dataset. Additionally, the results of the
full CH2 solution with the coarse RVE mesh are also shown, which shows much
less accurate (post-)buckling behavior.
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Figure 5.8: (a) Employed coarse RVE mesh for generating a more representative training
dataset. The resulting ROM has N = 48 displacement basis functions and Q = 282 integration
points, and its solution closely follows the CH2 solution for both (b) ζ = −0.035mm and (c)
ζ = 0.03mm. The result of the full CH2 model with the coarse RVE mesh is also shown for
comparison.

All simulations were executed on an Intel® Xeon® Platinum 8260 processor.
Computing the DNS solutions for ζ = −0.035mm and 0.03mm took 194 s and
459 s with one thread. The significant differences in computational times
are caused by the global buckling, which requires many more load steps for
convergence as compared to the local buckling. The ROM with N = 48, after
the offline stage is completed, took 23 s and 76 s for both simulations with
one thread, achieving an online speed-up of 6-8x as compared to the DNS
solver. With N = 78 and N = 112, both simulations took 51 s (ζ = −0.035mm)
and 231 s (ζ = 0.03mm), and 163 s (ζ = −0.035mm) and 360 s (ζ = 0.03mm).
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Concerning the offline stage of the randomly generated dataset, with one thread,
100 samples with each 20 load steps were computed in 1020 s, and constructing
the ROM took another 80 s. For the more representative training dataset,
the generation took significantly longer, as full two-scale simulations need to
be run. Note that the offline and online stage with the ROM can easily be
parallelized, since all RVEs can be solved independently, which would increase
the speed-up. On the other hand, DNS parallelization is less straightforward
and more difficult to achieve. CH2 and POD took much longer as compared to
the DNS since the considered scale separation is relatively low.

While this example problem might not be suitable for homogenization
since the DNS solution can be obtained quickly, it shows that the ROM can
accurately approximate the POD solution, i.e., the proposed algorithm for
finding a sparse integration scheme works well. Moreover, the POD solution
approaches the CH2 solution (provided the training data is representative),
which in turn approximates the DNS well.

5.3.2 Biaxial compression of graded cruciform

The second example deals with the biaxial compression of a graded cruciform-
shaped macrostructure with varying hole shapes (i.e., spatially varying ζ field)
throughout the domain, see Fig. 5.9. Each side edge has length 30mm and the
cut out parts at each corner are quarter circles with a radius of 15mm. Both
example parameterizations shown in Fig. 5.9 are considered and computed with
the DNS, CH2 and the ROM solver. The discretized DNS problem for Fig. 5.9a
has 3,475,044 DOFs and 800,889 elements and 3,627,610 DOFs and 839,580
elements for Fig. 5.9b. Each side edge is compressed by 2% in the normal
direction, while being fixed in the tangential direction. For CH2 and the ROM,
additionally, the xx- and yx-components of the deformation gradient are fixed
to F̂ xx = 1 and F̂ yx = 0 on the top and bottom edge, and the xy- and yy-
components of the deformation gradient are fixed to F̂ xy = 0 and F̂ yy = 1
on the left and right edge. The simulation meshes employed for CH2 and the
ROM are shown in Fig. 5.10.

The already trained ROM (with randomly generated training data) is re-used
here with N = 48, 78 and 112 displacement basis functions with Q = 296, 318
and 337 integration points, and referred to as ROM48, ROM78 and ROM112.

Results Both example geometries are solved with DNS, CH2 and the three
ROM solvers (ROM48, ROM78 and ROM112). The resulting force-displacement
curves are plotted in Fig. 5.11. For this example, the FE2 solver was also run
and able to converge, although it took more than ten times as many loading
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(a) Geometry 1 (b) Geometry 2

Figure 5.9: Two geometries are solved with the DNS solver. (a) ζ = 0.03mm is set for
the top right and bottom left part (in blue), and ζ = −0.05mm for the top left and bottom
right part (orange). (b) ζ = 0.05mm is set in the center (orange) for x ∈ [18mm, 42mm]×
[18mm, 42mm] and ζ = −0.075mm elsewhere (blue). Six-noded triangular elements are
employed for both geometries, resulting in (a) 3,475,044 DOFs and 800,889 elements, and (b)
3,627,610 DOFs and 839,580 elements.

steps as the DNS solver. The FE2 results are shown in Fig. 5.11 as well. For the
first geometry (see Fig. 5.11a), it can clearly be seen that all ROM solutions can
recover the CH2 solution nearly perfectly. As compared to the DNS solution,
the CH2 solution again predicts a higher pre-buckling stiffness, but the buckling
load and post-buckling stage are predicted quite well. With FE2, the pre- and
post-buckling stiffness are predicted accurately, but the structure buckles too
early. For the second geometry (see Fig. 5.11b), both FE2 and CH2 solutions
cannot capture the correct buckling load. The pre- and post-buckling stiffness
are predicted slightly more accurately with FE2. Since in this example, the
center part is set to ζ = −0.075mm, which is outside the training data (sampled
from ζ = {−0.05mm,−0.025mm, 0.0mm, 0.025mm, 0.05mm}), ROM48 is not
able to follow the CH2 solutions closely. The error reduces with N = 78
and 112. For both geometries, both components of the displacement field at
the final loading are shown for the DNS and ROM48 solutions in Figs. 5.12
and 5.13, where clearly the trend and magnitudes of the displacement fields
are comparable.

Concerning the run times (using one thread of Intel® Xeon® Platinum
8260), solving both problems with the DNS solver took 9274 s and 8847 s, while
with ROM48 it took 176 s and 113 s, implying online speed-ups of 53 and 78
times. With ROM78, the run times were 331 s and 275 s, meaning speed-ups of
28 and 32 times, and with ROM112, 865 s and 593 s elapsed until the problems
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(a) Geometry 1 (b) Geometry 2

Figure 5.10: Mesh of the homogenized cruciform used for CH2 and ROM. (a) ζ = 0.03mm
is set for the blue elements and ζ = −0.05mm for the orange elements. (b) The orange and
blue elements correspond to ζ = 0.05mm and ζ = −0.075mm. The meshes have (a) 48 and
(b) 28 elements with four quadrature points each.

were solved, which still amounts to online speed-ups of 11 and 15 times. The
computational costs of the offline stage are the same as reported for the previous
example in Section 5.3.1. The obtained speed-ups could be greatly increased by
using more threads due to the superior scaling of the multi-scale formulation
over the DNS. The run times for FE2 and CH2 are again much higher than the
run times of DNS.

The DNS solution took more than two hours (with one thread), mostly
because of the detection of instabilities (i.e., checking the system matrix for
negative eigenvalues and eigenvalues close to zero). If a large-scale problem
(in 3D) was considered, the DNS solution might become infeasible, since (1)
detecting negative eigenvalues is computationally expensive, and (2) negative
eigenvalues of the system matrix may cause problems for iterative solvers, while
direct solvers become too computationally expensive for large systems. On
the other hand, the ROM solution should remain relatively computationally
cheap, since the solver can be easily parallelized by solving all RVE problems
at the macroscopic integration points in parallel. An additional advantage
of the ROM is that, after training, different geometrical parameters inside
the macrostructure can be easily treated, while for the DNS the meshing can
become expensive and challenging, especially for 3D problems. This makes this
ROM an interesting candidate for the material design of buckling structures.
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Figure 5.11: Force-displacement curves for both example geometries of Figs. 5.9 and 5.10
obtained for DNS, CH2, FE2 and three ROMs with different numbers of basis functions N
and quadrature points Q. The FE2 solver was able to converge for both geometries, but
required more than 10 times as many loading steps as the DNS to converge. (a) All ROM
solutions are very close to the CH2 solution. Both CH2 and FE2 solution approximate
the DNS quite well. (b) The ROMs are not able to recover the CH2 solution accurately,
since ζ = −0.075mm is outside the training data. For higher number of basis functions, the
approximation becomes increasingly more accurate, and for ROM112 only small deviations
are observed during the post-buckling stage. Both CH2 and FE2 solutions are unable to
predict the DNS solution very well.



116 Chapter 5. A reduced order model for second-order computational homogenization

(a) (b)

(c) (d)

Figure 5.12: Displacement fields for geometry 1 obtained with DNS ((a) and (b)) and with
ROM48 ((c) and (d)). The shear band forming along the diagonal is clearly captured.
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(a) (b)

(c) (d)

Figure 5.13: Displacement fields for geometry 2 obtained with DNS ((a) and (b)) and with
ROM48 ((c) and (d)). The sharp transition in the center due to the sharp change in ζ is
more or less captured.
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5.4 Conclusions

In this chapter, we proposed a reduced order model (ROM) for second-order
computational homogenization (CH2), based on proper orthogonal decompos-
ition and a novel hyperreduction method that uses ideas from the empirical
cubature method and is specifically suited for CH2. Several aspects on the
derivation of the reduced system, including the treatment of constraints and
geometrical parameterizations, expressions for the effective quantities, and the
novel hyperreduction algorithm were discussed. Afterwards, the ROM was
tested on two numerical examples, in which the macrostructures are compressed
and multi-scale buckling occurs. The ROM solutions were critically evaluated
by comparison against the results obtained by the direct numerical simulation
(DNS), the full CH2 and the first-order computational homogenization (FE2)
models. The first example demonstrated that the proposed hyperreduction
algorithm identified integration points and weights that yield accurate res-
ults for several parameterizations of the microstructure. The second example
considered a more complex application, in which the geometry of the micro-
structures is varied within the macroscopic domain, and for which the DNS
solution takes a substantial amount of time to compute. When employing
the ROM for this problem, speed-ups ranging from 10 to 80 as compared to
the DNS were achieved with one thread. These speed-ups could be further
increased by employing more threads, since, in general, the multi-scale problem
scales much better than the DNS.

The comparison of methods additionally revealed some inherent deficiencies
of FE2 and CH2. Even though the FE2 solver yielded fairly accurate results for
the second example, it required an extensive amount of load steps to complete
the simulation. For the first example it was not able to converge at all. On
the other hand, the CH2 model is more robust and solved both examples.
However, the accuracy was similar to that of the FE2 model, despite the more
complicated strain gradient formulation.

To the best of our knowledge, this work is the first attempt of accelerating
an enriched computational homogenization formulation. Although we proposed
a reduced order model for second-order computational homogenization, we
are confident that our findings and employed methods also extend to other
formulations, e.g., based on micromorphic computational homogenization. As
different parameterizations of the microstructure can be treated as well, inter-
esting applications can be realized with this framework, such as two-scale shape
optimization problems, design of materials and uncertainty quantification.
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Discussion and outlook

The optimization and design of macrostructures with complex and hetero-
geneous microstructures is typically infeasible, since the numerical simulation
of such structures requires extremely fine meshes, making it computationally
expensive. To solve such systems more efficiently, two-scale methods based
on computational homogenization, which model both macro- and microscopic
features separately, are often employed. The two-scale system is then solved
in coupled manner. However, the resulting formulation often still remains
computationally expensive due to the repeated solution of the microscopic
problem.

Many existing works attempt to accelerate the microscopic problem with
non-intrusive or intrusive model order reduction techniques. While many
successful methods have been proposed, they typically require a large amount
of data and thus are impractical to be used, have a poor interpretability
since microscopic fields cannot be recovered, or can only be applied to fixed
microstructures, thereby restricting their applicability in optimization and
design. Furthermore, existing methods are currently limited to first-order
computational homogenization. Enriched formulations, such as second-order
computational homogenization, have not been considered thus far, which may
be beneficial for problems with small scale separation.

In this thesis, we addressed these issues by developing several reduced-
order models to accelerate the microscopic problem in first- and second-order
computational homogenization for microstructures that are parameterized by
material and geometrical parameters. For first-order computational homogen-
ization, two models were proposed. The first model, named PODGPR and
presented in Chapter 3, is a non-intrusive method designed to predict the
microscopic stress field. It combines proper orthogonal decomposition with
Gaussian process regression, complemented by geometrical transformations.
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Through proper orthogonal decomposition, the stress field is compressed into a
few reduced coefficients, which are then approximated using Gaussian process
regression models. With PODGPR, stress fields that always fulfill the under-
lying microscopic governing equations as well as the corresponding effective
stress and stiffness can be rapidly predicted. We conducted extensive tests on
the method, applying it to a range of hyperelastic microstructures including
porous and fiber-reinforced materials with varying material and geometrical
parameters. The method achieved considerable speed-ups while maintaining
high accuracy. Furthermore, when compared with feedforward neural networks,
PODGPR showcased superior accuracy and data efficiency. When integrated
into a two-scale problem with macrostructural variations, PODGPR accelerated
the solution by several orders of magnitude as compared with the full two-scale
simulation. However, the extension of PODGPR to history-dependent material
behavior is challenging.

To allow the treatment of history-dependent materials, our second model,
termed PODECM and presented in Chapter 4, is an intrusive approach and
integrates proper orthogonal decomposition with the empirical cubature method.
By employing POD, the number of degrees of freedom associated with the
microscopic problem is substantially reduced, while the empirical cubature
method enables a more efficient system assembly. The performance of PODECM
was first studied in a single-scale problem, specifically an RVE of a composite
microstructure comprising a soft elasto-plastic matrix with stiff inclusions of
variable size, controlled by a single geometrical parameter. Subsequently, we
evaluated the performance of PODECM in a two-scale simulation where a porous
elasto-plastic microstructure, characterized by two geometrical parameters, was
analyzed under non-monotonous loading. Both geometrical parameters were
varied throughout the macrostructure, leading to changes in the effective
Poisson’s ratio from positive to negative. Various PODECM models were
constructed, all exhibiting excellent accuracy and achieving significant speed-
ups.

Lastly, we introduced a reduced-order model for second-order computational
homogenization in Chapter 5. This leverages the proper orthogonal decomposi-
tion combined with a novel hyperreduction method tailored specifically for the
second-order formulation. We assessed this novel surrogate model using two
test cases: a perforated plate under uniaxial compression, which exhibits both
local and global buckling instabilities, and a punched cruciform subjected to
biaxial compression. Compared to the direct numerical simulation, where the
microstructure is fully resolved at the macroscale, and the full second-order
solution, our surrogate model demonstrated high accuracy and computational
efficiency.
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While our proposed reduced-order models have achieved excellent results in
addressing the two-scale computational homogenization problem, there remain
several open questions and exciting avenues for further research:

• Extension of PODGPR to inelastic materials: The PODGPR
method introduced in Chapter 3 is currently limited to elastic micro-
structures. An interesting direction would be to extend this approach
to inelastic microstructures and explore the use of recurrent neural net-
works to predict the POD coefficients instead of Gaussian process regres-
sion. This raises the question of whether such a model could outperform
directly learning the effective constitutive model with recurrent neural
networks [40, 141, 78, 94].

• Adaptive sampling with GPR: The uncertainty measure of Gaussian
process regression is currently not utilized in this work. It has been applied
in related works for adaptive sampling [45, 64, 144]. Could such a scheme
be effectively employed in computational homogenization, particularly
given its high-dimensional parameter spaces, to enhance the efficiency of
data sampling?

• PODGPR for second-order computational homogenization: The
performance of PODGPR has not been investigated in the context of
second-order computational homogenization, which is characterized by a
high-dimensional parameter space due to strain gradients. How would
PODGPR perform, especially when compared to the developed intrusive
model?

• Understanding empirical cubature method: The empirical cubature
method has empirically demonstrated high accuracy in computational
homogenization. However, more theoretical understanding on why this
method works so effectively is crucial and presents an interesting research
question.

• Extension to 3D and realistic applications: All numerical examples,
that were discussed in this thesis, were defined in 2D under plane strain
conditions. While the extension of all proposed methods to 3D appears
straightforward, the higher-dimensional loading parameter space in 3D
may introduce unforeseen challenges. Investigating this and assessing
the computational savings due to reduced order models in 3D would be
valuable.

• Application in inverse or optimization problems: Despite achieving
errors of less than 1% in forward solutions of the two-scale problem,
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these errors may potentially lead to very different results for inverse or
optimization problems. It would be intriguing to employ the surrogate
models for solving inverse or optimization problems and compare the
results to those obtained from the full model.

• Hyperreduction in other formulations: The developed hyperreduc-
tion model in Chapter 5 is highly versatile and can be adapted for other
formulations in computational homogenization, such as micromorphic
computational homogenization. Assessing this technology in such formu-
lations would be an interesting avenue to explore.



Appendix A

Constitutive models

A.1 Hyperelastic material models

Hyperelastic materials are characterized by history-independent behavior. Their
behavior is described through a strain energy density function W (F ). From
that, the second-order 1PK stress tensor P and the fourth-order stiffness tensor
A are derived with

P (F ) =
∂W

∂F
, (A.1)

A(F ) =
∂P

∂F
=

∂2W

∂F ⊗ ∂F
. (A.2)

A.1.1 Neo-Hookean material

There exist several formulations for Neo-Hookean materials that have slight
differences. In this work, we consider the following definition for the strain
energy density function:

W (F ,λ) = C1(tr(C(F ))− 3− 2 ln(J(F ))) +D1(J(F )− 1)2,

C(F ) = F TF ,

J(F ) = detF ,

(A.3)

where C1 and D1 are the material parameters stored in λ = [C1, D1]
T . The

parameters C1 and D1 are related to the Young’s modulus E and Poisson’s
ratio ν through,

E =
2C1(3D1 + 2C1)

C1 +D1
, ν =

D1

2(C1 +D1)
. (A.4)
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A.1.2 Bertoldi-Boyce material model

For the studies of elastomeric metamaterials, the authors in [9] employed the
following Mooney-Rivlin material model:

W (F ,λ) = C1(tr(C(F ))− 3− 2 ln(J(F )))

+ C2(tr(C(F ))− 3)2 +D1(J(F )− 1)2,

C(F ) = F TF ,

J(F ) = detF ,

(A.5)

where C1, C2 and D1 are the material parameters stored in λ = [C1, C2, D1]
T .

Their values were experimentally determined as C1 = 0.55MPa, C2 = 0.3MPa
and D1 = 27.5MPa.

A.2 Plasticity model

The small-strain J2-plasticity model with linear isotropic hardening model
obeys:

σ = C : (ϵ− ϵpl), (A.6)

fyield = ||σ||mises − (σy0 +Hξ), (A.7)

r =
∂f

∂σ
=

√
3

2

Dev(σ)√
Dev(σ) : Dev(σ)

, (A.8)

ξ̇ = γ, (A.9)

ϵ̇pl = γr, (A.10)

γ ≥ 0, fyield ≤ 0, γfyield = 0, (A.11)

where ϵ is the small-strain tensor, ϵpl the plastic strain tensor, C is the fourth-
order elasticity tensor that can be fully specified by Young’s modulus E and
Poisson’s ratio ν, and σ is the corresponding stress tensor; fyield defines the
yield surface, Dev(•) takes the deviatoric part of a tensor (•), || • ||mises =√

3

2
Dev(•) : Dev(•) computes the von Mises stress, H is the hardening constant,

σy0 yield stress, r the plastic flow direction, ξ the equivalent plastic strain that
defines the isotropic hardening of the yield surface, and γ is the consistency
parameter. The dot above a quantity denotes the (pseudo-)time derivative,
which is typically approximated with an implicit Euler scheme with some
discretized time step. However, since we consider rate-independent plasticity
here, the time step can always be multiplied with the γ and does not play
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any role. Instead, time steps become load steps, and sometimes very small
load steps are required for the global Newton solver to converge. Given the
last converged step k with internal variables (ϵpl,k, ξk) and a new input strain
ϵk+1, the new internal variables are obtained with ϵpl,k+1 = ϵpl,k + γrk+1 and
ξk+1 = ξk + γ, where rk+1 is the new plastic flow direction, computed from
the new stress σk+1. The value for the consistency parameter γ is computed
such that the Kuhn-Tucker conditions Eq. (A.11) are fulfilled. ξ and ϵpl are
both assumed to be 0 and 0 at the start, i.e., ξ0 = 0 and ϵpl,0 = 0. For more
information on the material model see Simo and Hughes [121].

Following the procedure of Cuitino et al. [24], by employing a multiplicative
split of the deformation gradient F = F elF pl, where F is split into its elastic
F el and plastic F pl part with F pl = I at the beginning, the elastic logarithmic
strain can be defined as

Cel
log := lnCel = ln((F el)TF el). (A.12)

By interpreting the elastic logarithmic strain Cel
log as the small-strain tensor

ϵ, the small-strain constitutive model defined in Eqs. (A.6)–(A.11) is used to
compute the stress tensor Ŝ on the intermediate configuration,

Ŝ := 2σ(Cel
log) : ∇CelCel

log, (A.13)

while the 1PK stress is recovered from Ŝ as

P = (F el)−1Ŝ (F pl)−T . (A.14)

Instead of evolving the plastic strain with Eq. (A.10), the plastic deformation
gradient F pl is evolved according to the following incremental form

F pl,k+1 = exp(γrk+1)F pl,k, (A.15)

where F pl,0 = I.
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Appendix B

Proper orthogonal
decomposition

Principal component analysis (PCA) is a powerful tool in data science to find a
low-dimensional approximation of a dataset in Euclidean space. By introducing
an appropriate function metric, PCA can be generalized for functions in Hilbert
spaces and is referred to as proper orthogonal decomposition (POD). POD can
utilize the correlation of solution snapshots of a partial differential equation
(PDE) for different parameters and find a low-dimensional orthonormal basis,
often reducing the number of unknowns to a small fraction of the dimension
of the original high-fidelity model. The procedure for computing the low-
dimensional basis is outlined in the following.

Given a function u ∈ V , where V is a Hilbert space equipped with an inner
product (•, •)V , that is the solution to a PDE, parameterized by parameters µ.
We are looking for a low-dimensional representation of u with

u(x;µ) =
N∑

n=1

an(µ)vn(x), (B.1)

with parameter-dependent coefficients an(µ) ∈ R, fixed global basis functions
vn(x) ∈ V, and N the number of basis functions.

To compute the basis functions vn(x), first, Npod high-fidelity simulations
for different parameters are computed and solution snapshots collected with
u(1),u(2), . . . ,u(Npod). Then, the correlation matrix C ∈ RNpod×Npod is formed
by computing the inner product between every pair of two snapshots,

Cij =
(
u(i),u(j)

)
V
, (B.2)
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for i, j = 1, 2, . . . , Npod. After obtaining the correlation matrix, an (approxim-
ate) eigenvalue decomposition is computed,

C ≈
N∑

n=1

λnyn ⊗ yn, (B.3)

with eigenvalues λn and eigenvectors yn. The number of basis functions
N ≤ Npod is often determined from the energy criterion∑N

n=1 λn∑Npod

n=1 λn

> Epod, (B.4)

where Epod corresponds to the energy captured by N basis functions and is
specified by the user. Moreover, the eigenvalues can also reveal if a problem is
reducible using POD: if the eigenvalues decay rapidly, the solution manifold
can be accurately captured by a few basis functions.

Finally, the n-th basis function can be computed with

vn =

Npod∑
i=1

cinu
(i), (B.5)

where cin = (yn)i/
√
λn and (yn)i denotes the i-th component of yn.

By construction, the POD basis is orthonormal in V, i.e.,

(vi,vj)V =

{
1 i = j

0 i ̸= j
. (B.6)
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Proof of Eq. (3.14)

With Bl the l-th basis function of the weighted stress, cf. Eq. (3.7), we want to
prove that ∫

Ωp

Bl(x
p)F T

µ dxp !
=

∫
Ωp

Bl(x
p)dxp (C.1)

for all µ and all l. First of all, Fµ can be written as

Fµ = I +∇xpdµ (C.2)

with dµ(x
p) ≡ d(xp;µ) the transformation displacement, so the left-hand side

of Eq. (C.1) splits into∫
Ωp

Bl(x
p)F T

µ dxp =

∫
Ωp

Bl(x
p)dxp +

∫
Ωp

Bl(x
p) (∇xpdµ)

T dxp. (C.3)

To prove Eq. (C.1), we thus need to show that∫
Ωp

Bl(x
p) (∇xpdµ)

T dxp !
= 0. (C.4)

Without loss of generality, assume only a single training snapshot, obtained
for parameters (F̄ ∗,λ∗,µ∗) on a domain Ωµ∗ , and a transformation map
Φµ∗ : Ωp → Ωµ∗

,xµ∗
= Φµ∗(xp). Thus, there is only a single basis function,

B1(x
p) = P (Φµ∗(xp); F̄ ∗,λ∗,µ∗)F−T

µ∗ |detFµ∗ | , (C.5)

and Eq. (C.4) becomes∫
Ωp

P (Φµ∗(xp); F̄ ∗,λ∗,µ∗)F−T
µ∗ |detFµ∗ | (∇xpdµ)

T dxp. (C.6)
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We now push the integral in Eq. (C.6) forward onto the domain Ωµ∗ . By
introducing the inverse mapping,

Φ−1
µ∗ : Ωµ∗ → Ωp, xp = Φ−1

µ∗ (xµ∗
), dxµ∗

= |detFµ∗ | dxp, (C.7)

Fµ∗ is transformed with

Fµ∗ = ∇xpΦµ∗(xp)

= ∇xµ∗ (Φµ∗(Φ−1
µ∗ (xµ∗

))) (∇xµ∗xp)−1

= (∇xµ∗xp)−1 ,

(C.8)

from which it follows that

F−T
µ∗ = (∇xµ∗xp)T . (C.9)

Furthermore, the partial derivative ∇xpdµ(x
p) can be expressed as

∇xpdµ(x
p) = ∇xµ∗ (dµ(Φ

−1
µ∗ (xµ∗

))) (∇xµ∗xp)−1 , (C.10)
or

(∇xpdµ)
T = (∇xµ∗xp)−T

(
∇xµ∗ (dµ(Φ

−1
µ∗ (xµ∗

)))
)T

(C.11)

by transposing both sides of Eq. (C.10). With aid of Eqs. (C.7), (C.9)
and (C.11), Eq. (C.6) becomes∫

Ωµ∗
P (xµ∗

; F̄ ∗,λ∗,µ∗)
(
∇xµ∗ (dµ(Φ

−1
µ∗ (xµ∗

)))
)T

dxµ∗
. (C.12)

Utilizing the divergence theorem, Eq. (C.12) can be rewritten as∫
∂Ωµ∗

t0 ⊗ dµ(Φ
−1
µ∗ (xµ∗

)) dxµ∗

−
∫
Ωµ∗

dµ(Φ
−1
µ∗ (xµ∗

))⊗ (∇xµ∗ · P (xµ∗
; F̄ ∗,λ∗,µ∗))dxµ∗

,

(C.13)

where t0 := P (xµ∗
; F̄ ∗,λ∗,µ∗)n is the traction vector with n the outer unit

normal along the boundary ∂Ωµ∗ . Using the fact that the training snapshot
fulfills the balance of linear momentum ∇xµ∗ · P (xµ∗

; F̄ ∗,λ∗,µ∗) = 0 on the
domain Ωµ∗ , the latter part of Eq. (C.13) becomes 0, and therefore,∫

Ωµ∗
P (xµ∗

; F̄ ∗,λ∗,µ∗)
(
∇xµ∗ (dµ(Φ

−1
µ∗ (xµ∗

)))
)T

dxµ∗

=

∫
∂Ωµ∗

t0 ⊗ dµ(Φ
−1
µ∗ (xµ∗

)) dxµ∗
.

(C.14)
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Due to the definition of the auxiliary problem in Eq. (3.2), dµ(Φ
−1
µ∗ (xµ∗

)) is 0

on the boundary ∂Ωµ∗ and therefore the boundary integral in Eq. (C.14) always
results in the zero tensor, meaning that the integral in Eq. (C.6) vanishes for
all µ.

Since each basis function Bl is a linear combination of converged weighted
stress fields, from the linearity, the integral on the left hand side of Eq. (C.4)
vanishes as well, which is what we wanted to prove and, thus, Eq. (C.1) holds.

■
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Appendix D

Effective sensitivities with
corrected coefficients

When correcting the POD coefficients to fulfill the macroscopic balance of
angular momentum in Eq. (3.27), the effective stress is computed as,

P (F ,λ,µ) =
L∑
l=1

α⊥
l (F ,λ,µ)Bl, (D.1)

α⊥
l (F ,λ,µ) = α̂∗

l (F ,λ,µ)− α̂∗(F ,λ,µ) · γ(F )

γ(F ) · γ(F )
γl(F ), (D.2)

where α̂∗(F ,λ,µ) are the coefficients predicted by the GPRs and γ(F ) was
defined in Eq. (3.34). The second part in Eq. (D.2) corresponds to the correction
term, and the effective sensitivities, as defined in Eqs. (3.17)–(3.19), also need
to be corrected by the derivative of this correction term:

A = ∇FP =

L∑
l=1

Bl ⊗∇Fα
⊥
l , (D.3)

∇λP =

L∑
l=1

Bl ⊗∇λα
⊥
l , (D.4)

∇µP =
L∑
l=1

Bl ⊗∇µα
⊥
l . (D.5)
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With the derivative of γl in Eq. (3.34) with respect to F

∇F γl = Bl,11

[
0 0
1 0

]
+Bl,12

[
0 0
0 1

]
−Bl,21

[
1 0
0 0

]
−Bl,22

[
0 1
0 0

]
=

[
Bl,21 Bl,22

Bl,11 Bl,12

]
,

(D.6)

and

∇F ((γ · γ)−1) = −2(γ · γ)−2
L∑
l=1

γl∇F γl, (D.7)

the derivative of the correction term with respect to F can be written as:

∇F

(
α̂∗(F ,λ,µ) · γ(F )

γ(F ) · γ(F )
γl(F )

)
=

(
L∑
l=1

γl∇F α̂
∗
l

)
(γ · γ)−1γl

+

(
L∑
l=1

α̂∗
l∇F γl

)
(γ · γ)−1γl

+ (α̂∗ · γ)∇F ((γ · γ)−1)γl

+
α̂∗ · γ
γ · γ ∇F γl.

(D.8)

Similarly, the derivative with respect to λ is,

∇λ

(
α̂∗(F ,λ,µ) · γ(F )

γ(F ) · γ(F )
γl(F )

)
=

(
L∑
l=1

γl∇λα̂
∗
l

)
(γ · γ)−1γl, (D.9)

and with respect to µ,

∇µ

(
α̂∗(F ,λ,µ) · γ(F )

γ(F ) · γ(F )
γl(F )

)
=

(
L∑
l=1

γl∇µα̂
∗
l

)
(γ · γ)−1γl. (D.10)
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Feedforward neural networks

Feedforward neural networks are regression models that, given some training
data {(x(i),y(i))}Ntrain

i=1 , learn a function f that maps inputs x to outputs
y ≈ fθ(x), where θ contains the parameters to be optimized and depends on
the network architecture. In general, the network has an input layer, an output
layer, and can have so-called hidden layers in between the input and output
layer. Each layer has a specified dimension, often referred to as number of
neurons. The approximating function f can then be written as a recursion with
x0 ≡ x:

fθ(x) = xNh+1 (E.1)
xl+1 = σl(Alxl + bl) (E.2)

for l = 0, . . . , Nh, where Nh is the number of hidden layers. The matrices
Al ∈ RN l+1

n ×N l
n and vectors bl ∈ RN l+1

n , also known as weights and biases,
contain the parameters to be optimized, where N l

n is the number of neurons in
the l-th layer, with N0

n = dimx and NNh+1
n = dimy. The activation functions

σl are applied element-wise to each entry of their input and usually do not
contain any parameters to be optimized. Popular activation functions comprise
the RELU-function (rectified linear unit) with

RELU(x) =

{
x x ≥ 0

0 x < 0
, (E.3)

or ELU-function (exponential linear unit),

ELU(x) =

{
x x ≥ 0

α(exp(x)− 1) x < 0
, (E.4)
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where α is chosen by the user, often set to α = 1 by default. The number of
parameters Nθ to be optimized in the NN can be computed with

Nθ := dimθ =

Nh∑
l=0

(N l+1
n ·N l

n +N l+1
n ), (E.5)

if the weights and biases are not further constrained. To find optimal parameters
θ∗, the following unconstrained optimization problem is posed and solved

θ∗ = argmin
θ∈RNθ

Ntrain∑
i=1

L(fθ(x(i)),y(i)), (E.6)

where L is the loss function that measures the discrepancy between the predicted
output fθ(x

(i)) with the true output y(i). Often times, the mean squared error
(MSE), defined by

LMSE(y, ỹ) =
1

Ntrain
(y − ỹ)T · (y − ỹ), (E.7)

is chosen. Since the optimization problem in Eq. (E.6) is non-convex, it is
typically approximately solved using a stochastic gradient descent (SGD), such
as the Adam optimizer [65]. The gradients, required for the optimization, can
be efficiently computed with automatic differentiation. For more information
on neural networks and deep learning, we refer to [13, 41].



Appendix F

Empirical cubature method

The greedy algorithm to select the reduced set of integration points with
corresponding weights {(xq, wq)}Qq=1 among all integration points and weights

of the full model {(x̂q, ŵq)}Q̂q=1, as presented in [48], is briefly summarized here.
Starting from Eq. (4.12),

Q̂∑
q=1

ŵq [∇xpvi : Bl]|x̂q
≈

Q∑
q=1

wq [∇xpvi : Bl]|xq
, (F.1)

with i = 1, . . . , N and l = 1, . . . , L, both left and right hand side can be
compactly written as

b̂ = Âŵ ≈ Â•Iw, (F.2)

where

Â =



(∇xpv1 : B1)|x̂1
. . . (∇xpv1 : B1)|x̂Q̂

...
...

(∇xpv1 : BL)|x̂1
. . . (∇xpv1 : BL)|x̂Q̂

...
...

(∇xpvN : B1)|x̂1
. . . (∇xpvN : B1)|x̂Q̂

...
...

(∇xpvN : BL)|x̂1
. . . (∇xpvN : BL)|x̂Q̂


∈ RNL×Q̂, (F.3)
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and

ŵ =

 ŵ1
...

ŵQ̂

 ∈ RQ̂, b̂ =



∫
Ωp

∇xpv1 : B1dx
p

...∫
Ωp

∇xpv1 : BLdx
p

...∫
Ωp

∇xpvN : B1dx
p

...∫
Ωp

∇xpvN : BLdx
p



∈ RNL. (F.4)

It is assumed that the integrals in b̂ are exactly computed through Âŵ.
I denotes a set of non-repeating indices with |I| = Q and Â•I ∈ RNL×Q

is the submatrix of Â with Q selected columns according to the entries of
I, with each column corresponding to one integration point. The weights
w = [w1, . . . , wQ] ∈ RQ are computed from the non-negative least squares
problem,

wLS = argmin
w≥0

∣∣∣∣∣∣b̂− Â•Iw
∣∣∣∣∣∣
2
. (F.5)

The indices in I are selected one by one, according to Algorithm 4. The
algorithm is terminated if the residual of the least squares problem in Eq. (F.5)
is below a user-defined error ϵECM, the maximum number of iteration kmax

exceeded, or a specified number of integration points Qmax determined.
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Algorithm 4 Integration point selection algorithm

Offline Stage: Â, b̂, ϵECM, kmax, Qmax

Online Stage: wLS, I
Initialize empty list of selected columns I ← ∅
Initialize list of candidate indices C ← {1, . . . , Q̂}
Set iteration number k ← 0
Set initial residual r̂← b̂
while k < kmax do

k ← k + 1
Find the column i of Â with

i = argmax
j∈C

ÂT
•j r̂√

ÂT
•jÂ•j

Add selected index I ← I ∪ {i}
Remove selected index from candidates C ← C \ {i}
Solve Eq. (F.5) for wLS

Compute residual r̂ = b̂− Â•Iw
LS

if ||r̂||2 < ϵECM or |I| = Qmax then
return wLS, I ▷ Algorithm is converged

end if
end while
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Summary

Model order reduction in two-scale solid mechanics
To study the non-linear effect of microstructure onto macroscopic properties,
scale-bridging methods such as computational homogenization are frequently
employed in which the micro- and macrostructure are separately modelled,
discretized, and solved concurrently in a coupled manner. Although homo-
genization techniques bring substantial computational savings in engineering
applications, the solution of two-scale systems is still computationally expensive,
and even infeasible in multi-query contexts, such as optimization, material
design, etc.

To render these analyses tractable, it is necessary to construct surrogate
models that can effectively and accurately capture the microscopic behavior over
a large parameter and design space of shape, material, and loading parameters.
To address this, this dissertation investigates two distinct model order reduction
techniques. Within the context of first-order computational homogenization,
the first method combines the proper orthogonal decomposition with Gaussian
process regression. The method is successfully applied to a two-scale bench-
mark problem with hyperelastic material behavior of microstructures under
varying conditions, such as stiffness and shape. The second method utilizes
POD in conjunction with the empirical cubature method and is applied to
two-scale examples, which are motivated by mechanical metamaterials and
involve elasto-plastic microstructures under large deformations. Additionally,
the shape of such microstructures can vary throughout the macroscopic domain,
leading to qualitative different effective properties, such as, e.g., positive or neg-
ative Poisson’s ratios. Finally, extensions towards second-order computational
homogenization are considered, utilizing the latter of the two aforementioned
methods. It is shown that the developed methodology is capable of handling the
high-dimensional parameter space, and further captures the multi-scale buck-
ling phenomena for which the first-order formulation fails. For all considered
numerical examples, all methods yield high accuracies with high speed-ups. The
advantages and disadvantages are carefully assessed and critically evaluated.
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